Advertisement

Ascending Somatosensory Systems

  • William D. WillisJr.

Abstract

The ascending somatosensory pathways signal to the brain information concerning stimuli that are applied to the body or head. This chapter considers only those pathways that convey sensory information from the body. The term “somatosensory” is somewhat misleading, since the somatosensory pathways are used for the perception of signals originating from the viscera (see Foreman, Chapter 10) in addition to those coming from sensory receptors located in such somatic structures as the skin, muscles, and joints. Thus, the pathways to be discussed mediate both somatic and visceral sensation.

Keywords

Receptive Field Dorsal Column Spinothalamic Tract Medial Lemniscus Cuneate Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abols, I. A., and Basbaum, A. I. Afferent connections of the rostral medulla of the cat: A neural substrate for midbrain-medullary interactions in the modulation of pain. J. Comp. Neurol. 201:285–297, 1981.PubMedGoogle Scholar
  2. Albe-Fessard, D., and Kruger, L. Duality of unit discharges from cat centrum medianum in response to natural and electrical stimulation. J. Neurophysiol. 25:3–20, 1962.PubMedGoogle Scholar
  3. Albk-Fessard, D., Levante, A., and Lamolr, Y. Origin of spinothalamic tract in monkeys. Brain Res. 65:503–509, 1974.Google Scholar
  4. Andersson, S. A., Norrsell, K., and Norrsell, U. Spinal pathways projecting to the cerebral first somatosensory area in the monkey. J. Physiol. (Lond.) 225:589–597, 1972.Google Scholar
  5. Andrezik, J. A., Chan-Palav, V., and Palay, S. L. The nucleus paragigantocellularis lateralis in the rat. Demonstration of Afferents by the retrograde transport of horseradish peroxidase. Anat. Embryol. 161:373–390, 1981.PubMedGoogle Scholar
  6. Angaut-Petti, D. The dorsal column system: I. Existence of long ascending postsynaptic fibres in the cat’s fasciculus gracilis. Exp. Brain Res. 22:457–470, 1975a.Google Scholar
  7. Angaut-Petti, D. The dorsal column system: II. Functional properties and bulbar relay of the cat’s fasciculus gracilis. Exp. Brain Res. 22:471–493, 1975b.Google Scholar
  8. Applebaum, A. E., Beall, J. E., Foreman, R. D., and Willis, W. D. Organization and receptive fields of primate spinothalamic tract neurons. J. Neurophysiol., 38:572–586, 1975.PubMedGoogle Scholar
  9. Beall, J. E., Applebaum, A. E., Foreman, R. D., and Willis, W. D. Spinal cord potentials evoked by cutaneous Afferents in the monkey. J. Neurophysiol., 40:199–211, 1977.PubMedGoogle Scholar
  10. Bennett, G. J., Seltzer, Z., Lu, G. W., Nishikawa, N., and Dubner, R. The cells of origin of the dorsal column projection in the lumbosacral enlargements of cats and monkeys. Somatosens. Res. 1:131–149, 1983.PubMedGoogle Scholar
  11. Berkley, K. J. Different targets of different neurons in nucleus gracilis of the cat. J. Comp. Neurol. 163:285–304, 1975.PubMedGoogle Scholar
  12. Berkley, K. J. Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys. I. Ascending somatic sensory inputs to lateral diencephalon. J. Comp. Neurol. 193:283–317, 1980.PubMedGoogle Scholar
  13. Berkley, K. J., Blomqvist, A., Pelt, A., and Flink, R. Differences in the collateralization of neuronal projections from the dorsal column nuclei and lateral cervical nucleus to the thalamus and tectum in the cat: An anatomical study using two different double-labeling techniques. Brain Res. 202:273–290, 1980.PubMedGoogle Scholar
  14. Besson, J. M., Guilbaud, G., Abdelmoumene, H., and Chaouch, A. Physiologie de 1a nociception. J. Physiol. (Paris) 78:7–107, 1982.Google Scholar
  15. Biedenbach, M. A. Cell density and regional distribution of cell types in the cuneate nucleus of the rhesus monkey. Brain Res. 45:1–14, 1972.PubMedGoogle Scholar
  16. Björkland, M. Anatomical Studies on the Somatosensory Projections to the Midbrain from the Spinal Cord and Dorsal Column Nuclei in the Cat, Dissertation, Karolinska Institutet, Stockholm, 1984.Google Scholar
  17. Blomqvist, A., Flink, R., Bowsher, D., Griph, S., and Westman, J. Tectal and thalamic projections of dorsal column and lateral cervical nuclei: A quantitative study in the cat. Brain Res. 141:335–341, 1978.PubMedGoogle Scholar
  18. Boivie, J. The termination of the cervicothalamic tract in the cat. An experimental study with silver impregnation methods. Brain Res. 19:333–360, 1970.PubMedGoogle Scholar
  19. Boivie, J. The termination in the thalamus and the zona incerta of fibres from the dorsal column nuclei (DCN) in the cat. An experimental study with silver impregnation methods. Brain Res. 28:459–490, 1971a.PubMedGoogle Scholar
  20. Boivie, J. The termination of the spinothalamic tract in the cat. An experimental study with silver impregnation methods. Exp. Brain Res. 12:331–353, 1971b.Google Scholar
  21. Boivie, J. Anatomical observations on the dorsal column nuclei, their thalamic projection and the cytoarchitecture of some somatosensory thalamic nuclei in the monkey. J. Comp. Neurol. 178:17–48, 1978.PubMedGoogle Scholar
  22. Boivie, J. An anatomical reinvestigation of the termination of the spinothalamic tract in the monkey. J. Comp. Neurol. 186:343–370, 1979.PubMedGoogle Scholar
  23. Boivie, J. Thalamic projections from lateral cervical nucleus in the monkey. A degeneration study. Brain Res. 198:13–26, 1980.PubMedGoogle Scholar
  24. Boivie, J., and Boman, K. Termination of a separate (proprioceptive?) cuneothalamic tract from external cuneate nucleus in monkey. Brain Res. 224:235–246, 1981.PubMedGoogle Scholar
  25. Boivie, J., Grant, G., Albe-Fessard, D., and Levante, A. Evidence for a projection to the thalamus from the external cuneate nucleus in the monkey. Neurosci. Lett. 1:3–8, 1975.PubMedGoogle Scholar
  26. Bowsher, D. Termination of the central pain pathway in man: The conscious appreciation of pain. Brain 80:606–622, 1957.PubMedGoogle Scholar
  27. Bowsher, D. The termination of secondary somatosensory neurons within the thalamus of Macaca mulatta: An experimental degeneration study. J. Comp. Neurol. 117:213–227, 1961.PubMedGoogle Scholar
  28. Brodal, A. Neurological Anatomy in Relation to Clinical Medicine, Oxford University Press, New York, 1981.Google Scholar
  29. Brodal, A., and Rexed, B. Spinal Afferents to the lateral cervical nucleus in the cat. An experimental study. J. Comp. Neurol. 98:179–211, 1953.PubMedGoogle Scholar
  30. Bromberg, M. B., and Whitehorn, D. Myelinated fiber types in the superficial radial nerve of the cat and their central projections. Brain Res. 78:157–163, 1974.PubMedGoogle Scholar
  31. Bromberg, M. B., Burnham, J. A., and Towe, A. L. Doubly projecting neurons of the dorsal column nuclei. Neurosci. Lett. 25:215–220, 1981.PubMedGoogle Scholar
  32. Brown, A. G. Cutaneous afferent fibre collaterals in the dorsal columns of the cat. Exp. Brain Res. 5:293–305, 1968.PubMedGoogle Scholar
  33. Brown, A. G. Effects of descending impulses on transmission through the spinocervical tract. J. Physiol. (Lond.) 219:103–125, 1971.Google Scholar
  34. Brown, A. G. Organization in the Spinal Cord. Springer-Verlag, New York, 1981.Google Scholar
  35. Brown, A. G., and Franz, D. N. Responses of spinocervical tract neurones to natural stimulation of identified cutaneous receptors. Exp. Brain Res. 7:231–249, 1969.PubMedGoogle Scholar
  36. Brown, A. G., and Fyffe, R. E. W. Form and function of dorsal horn neurones with axons ascending the dorsal columns in the cat. J. Physiol. (Lond.) 321:31–47, 1981.Google Scholar
  37. Brown, A. G., and Réthelyi, M. (eds.) Spinal Cord Sensation: Sensory Processing in the Dorsal Horn, Scottish Academic Press, Edinburgh, 1981, p. 332.Google Scholar
  38. Burgess, P. R., and Clark, F. J. Dorsal column projection of fibres from the cat knee joint. J. Physiol. (Lond.) 203:301–315, 1969.Google Scholar
  39. Burton, H., and Craig, A. D. Spinothalamic projections in cat, raccoon and monkey: A study based on anterograde transport of horseradish peroxidase, in: Somatosensory Integration in the Thalamus (G. MacChi, A. Rustioni, and R. Spreafico, eds.), Elsevier, Amsterdam, 1983, pp. 17–41.Google Scholar
  40. Burton, H., and Loewy, A. D. Projections to the spinal cord from medullary somatosensory relay nuclei. J. Comp. Neurol. 173:773–793, 1977.PubMedGoogle Scholar
  41. Cajal, S. R. y Histologie du Systéme Nerveux de l’Homme et des Vertèbrès, Vol. I, Institute, Cajal, Madrid, 1909, reprinted 1952.Google Scholar
  42. Carpenter, M. B., Stein, B. M., and Shriver, J. E. Central projections of spinal dorsal roots in the monkey. II. Lower thoracic, lumbosacral and coccygeal dorsal roots. Am. J. Anat. 123:75–118, 1968.PubMedGoogle Scholar
  43. Carstens, E., and Trevino, D. L. Laminar origins of spinothalamic projections in the cat as determined by the retrograde transport of horseradish peroxidase. J. Comp. Neurol. 182:151–166, 1978.Google Scholar
  44. Casey, K. L., and Morrow, T. J. Ventral posterior thalamic neurons differentially responsive to noxious stimulation of the awake monkey. Science 221:675–677, 1983.PubMedGoogle Scholar
  45. Cervero, F., Iggo, A., and Molony, V. Responses of spinocervical tract neurones to noxious stimulation of the skin. J. Physiol. (Lond.) 267:537–558, 1977.Google Scholar
  46. Chaouch, A., Menetrey, D., Binder, D., and Besson, J. M. Neurons at the origin of the medial component of the bulbopontine spinoreticular tract in the rat: An anatomical study using horseradish peroxidase retrograde transport. J. Comp. Neurol. 214:309–320, 1983.PubMedGoogle Scholar
  47. Chung, J. M., Kenshalo, D. R., Jr., Gerhart, K. D., and Willis, W. D. Excitation of primate spinothalamic neurons by cutaneous C-fiber volleys. J. Neurophysiol. 42:1354–1369, 1979.PubMedGoogle Scholar
  48. Chung, J. M., Fang, Z. R., Hori, Y., Lee, K. H., and Willis, W. D. Prolonged inhibition of primate spinothalamic tract cells by peripheral nerve stimulation. Pain 19:259–274, 1984a.PubMedGoogle Scholar
  49. Chung, J. M., Lee, K. H., Hori, Y., Endo, K., and Willis, W. D. Factors influencing peripheral nerve stimulation produced inhibition of primate spinothalamic tract cells. Pain 19:277–293, 1984b.PubMedGoogle Scholar
  50. Clark, F.J. Central projections of sensory fibers from the cat knee joint. J. Neurobiol. 3:101–110, 1972.PubMedGoogle Scholar
  51. Clark, F. J., Landgren, S., and Silfvenius, H. Projections to the cat’s cerebral cortex from low threshold joint Afferents. Acta Physiol. Scand. 89:503–521, 1973.Google Scholar
  52. Costanzo, R. M. and Gardner, E. P. A quantitative analysis of responses of direction-sensitive neurons in somatosensory cortex of awake monkeys. J. Neurophysiol. 43:1319–1341, 1980.PubMedGoogle Scholar
  53. Craig, A. D. Spinocervical tract cells in cat and dog, labeled by the retrograde transport of horseradish peroxidase. Neurosci. Lett. 3:173–177, 1976.PubMedGoogle Scholar
  54. Craig, A. D. Spinal and medullary input to the lateral cervical nucleus. J. Comp. Neurol. 181:729–744, 1978.PubMedGoogle Scholar
  55. Craig, A. D., and Burton, H. The lateral cervical nucleus in the cat: Anatomic organization of cervicothalamic neurons. J. Comp. Neurol. 185:329–346, 1979.PubMedGoogle Scholar
  56. Craig, A. D., and Burton, H. Spinal and medullary lamina I projection to nucleus submedius in medial thalamus: A possible pain center. J. Neurophysiol. 45:443–466, 1981.PubMedGoogle Scholar
  57. Craig, A. D., and Kniffki, K. D. Lumbosacral lamina I cells projecting to medial and/or lateral thalamus in the cat. Soc. Neurosci. Abstr. 8:95, 1982.Google Scholar
  58. Craig, A. D., and Tapper, D. N. Lateral cervical nucleus in the cat: Functional organization and characteristics. J. Neurophysiol. 41:1511–1534, 1978.PubMedGoogle Scholar
  59. Dilly, P. N., Wall, P. D., and Webster, K. E. Cells of origin of the spinothalamic tract in the cat and rat. Exp. Neurol. 21:550–562, 1968.PubMedGoogle Scholar
  60. Dong, W. K., Ryu, H., and, Wagman, I. H. Nociceptive responses of neurons in medial thalamus and their relationship to spinothalamic pathways. J. Neurophysiol. 41:1592–1613, 1978.PubMedGoogle Scholar
  61. Douglas, P. R., Ferrington, D. G., and Rowe, M. R. Coding of information about tactile stimuli by neurones of the cuneate nucleus. J. Physiol. (Lond.) 285:493–513, 1978.Google Scholar
  62. Dreyer, D. A., Schneider, R. J., Metz, G. B., and Whitsel, B. L. Differential contributions of spinal pathways to body representation in postcentral gyrus of Macaca Mulatto. J. Neurophysiol. 37:119–145, 1974.PubMedGoogle Scholar
  63. Dreyer, D. A. Loe, P. R., Metz, C. B., and Whitsel, B. L. Representation of head and face in postcentral gyrus of the macaque. J. Neurophysiol. 38:714–733, 1975.PubMedGoogle Scholar
  64. Duncan, G. H., Dreyer, D. A., McKenna, T. M., and Whitsel, B. L. Dose-and time-dependent effects of ketamine on SI neurons with cutaneous receptive fields. J. Neurophysiol. 47:677–699, 1982.PubMedGoogle Scholar
  65. Dykes, R. W., Rasmussen, D. D., Sretavan, D., and Rehman, N. B. Submodality segregation and receptive-field sequences in the cuneate, gracile, and external cuneate nuclei of the cat. J. Neurophysiol. 47:389–416, 1982.PubMedGoogle Scholar
  66. Ellis, L. C., and Rustioni, A. A correlative HRP, Golgi, and EM study of the intrinsic organization of the feline dorsal column nuclei. J. Comp. Neurol. 197:341–367, 1981.PubMedGoogle Scholar
  67. Ferraro, A., and Barrera, S. E. The nuclei of the posterior funiculi in Macacus rhesus. Arch. Neurol Psychiatry 33:262–275, 1935a.Google Scholar
  68. Ferraro, A., and Barrera, S. E. Posterior column fibers and their termination in Macacus rhesus. J. Comp. Neurol. 62:507–530, 1935b.Google Scholar
  69. Fields, H. L., Wagner, G. M., and Anderson, S. D. Some properties of spinal neurons projecting to the medial brain-stem reticular formation. Exp. Neurol. 47:118–134, 1975.PubMedGoogle Scholar
  70. Fields, H. L., Clanton, C. H., and Anderson, S. D. Somatosensory properties of spinoreticular neurons in the cat. Brain Res. 120:49–66, 1977.PubMedGoogle Scholar
  71. Fisher, G. R., Freeman, B., and Rowe, M.J. Organization of parallel projections from Pacinian afferent fibers to somatosensory cortical areas I and II in the cat. J. Neurophysiol. 49:75–97, 1983.PubMedGoogle Scholar
  72. Foerster, O., and Gagel, O. Die Vorderseitenstrangdurschneidung beim Menschen. Eine klin-isch-patho-physiologisch-anatomische Studie. Z. Ges. Neurol. Psychiatrie 138:1–92, 1932.Google Scholar
  73. Foreman, R. D., and Webber, R. N. Responses from neurons of the primate spinothalamic tract to electrical stimulation of Afferents from the cardiopulmonary region and somatic structures. Brain Res. 186:463–468, 1980.PubMedGoogle Scholar
  74. Foreman, R. D., Applebaum, A. E., Beall, J. E., Trevino, D. L., and Willis, W. D. Responses of primate spinothalamic tract neurons to electrical stimulation of hindlimb peripheral nerves. J. Neurophysiol. 38:132–145, 1975.PubMedGoogle Scholar
  75. Foreman, R. D., Schmidt, R. F., and Willis, W. D. Effects of mechanical and chemical stimulation of fine muscle Afferents upon primate spinothalamic tract cells. J. Physiol. (Lond.) 286:215–231, 1979.Google Scholar
  76. Friedman, D. P., and Jones, E. G. Thalamic input to areas 3a and 2 in monkeys. J. Neurophysiol. 45:59–85, 1981.PubMedGoogle Scholar
  77. Gaze, R. M., and Gordon, G. The representation of cutaneous sense in the thalamus of the cat and monkey. Q. J. Exp. Physiol. 39:279–304, 1954.PubMedGoogle Scholar
  78. Gerhart, K. D., Yezierski, R. P., Giesler, G. J., and Willis, W. D. Inhibitory receptive fields of primate spinothalamic tract cells. J. Neurophysiol. 46:1309–1325, 1981.PubMedGoogle Scholar
  79. Giesler, G. J., Menetrey, D., Guilbaud, G., and Besson, J. M. Lumbar cord neurons at the origin of the spinothalamic tract in the rat. Brain Res. 118:320–324, 1976.PubMedGoogle Scholar
  80. Giesler, G. J., Menetrey, D., and Basbaum, A. I. Differential origins of spinothalamic tract projections to medial and lateral thalamus in the rat. J. Comp. Neurol. 184:107–126, 1979a.PubMedGoogle Scholar
  81. Giesler, G. J., Urca, G., Cannon, J. T., and Liebeskind, J. C. Response properties of neurons of the lateral cervical nucleus in the rat. J. Comp. Neurol. 186:65–78, 1979b.PubMedGoogle Scholar
  82. Giesler, G. J., Yezierski, R. P., Gerhart, K. D., and Willis, W. D. Spinothalamic tract neurons that project to medial and/or lateral thalamic nuclei: Evidence for a physiologically novel population of spinal cord neurons. J. Neurophysiol. 46:1285–1308, 1981.PubMedGoogle Scholar
  83. Giesler, G. J., Nahin, R. L., and Madsen, A. M. Postsynaptic dorsal column pathway of the rat. I. Anatomical studies. J. Neurophysiol. 51:260–275, 1984.PubMedGoogle Scholar
  84. Glees, P., and Soler, J. Fibre content of the posterior column and synaptic connections of nucleus gracilis. Z. Zellforsch. 36:381–400, 1951.PubMedGoogle Scholar
  85. Gordon, G., and Jukes, M. G. M. Dual organization of the exteroceptive components of the cat’s gracile nucleus, J. Physiol (Lond.) 173:263–290, 1964.Google Scholar
  86. Grant, G., Boivie, J., and Silfvenius, H. Course and termination of fibres from the nucleus Z of the medulla oblongata. An experimental light microscopical study in the cat. Brain Res. 55:55–70, 1973.PubMedGoogle Scholar
  87. Guilbaud, G., Caille, D., Besson, J. M., and Benelli, G. Single unit activities in ventral posterior and posterior group thalamic nuclei during nociceptive and non-nociceptive stimulations in the cat. Arch. Ital. Biol. 115:38–56, 1977.PubMedGoogle Scholar
  88. Guilbaud, G., Peschanski, M., Gautron, M., and Binder, D. Neurones responding to noxious stimulation of VB complex and caudal adjacent regions in the thalamus of the rat. Pain 8:303–318, 1980.PubMedGoogle Scholar
  89. Ha, H. Cervicothalamic tract in the rhesus monkey. Exp. Neurol. 33:205–212, 1971.PubMedGoogle Scholar
  90. Haber, L. H., Moore, B. D., and Willis, W. D. Electrophysiological response properties of spinoreticular neurons in the monkey. J. Comp. Neurol. 207:75–84, 1982.PubMedGoogle Scholar
  91. Hand, P. J. Lumbosacral dorsal root terminations in the nucleus gracilis of the cat. J. Comp. Neurol. 126:137–156, 1966.PubMedGoogle Scholar
  92. Hand, P. J., and van Winkle, T. The afferent connections of the feline nucleus cuneatus. J. Comp. Neurol. 171:83–110, 1977.PubMedGoogle Scholar
  93. Honda, C. N., Mense, S., and Perl, E. R. Neurons in ventrobasal region of the cat thalamus selectively responsive to noxious mechanical stimulation. J. Neurophysiol. 49:662–673, 1983.PubMedGoogle Scholar
  94. Hong, S. K., Kniffki, K. D., Mense, S., Schmidt, R. F., and Wendisch, M. Descending influences on the responses of spinocervical tract neurones to chemical stimulation of fine muscle Afferents. J. Physiol (Lond.) 290:129–140, 1979.Google Scholar
  95. Horch, K. W., Burgess, P. R., and Whitehorn, D. Ascending collaterals of cutaneous neurons in the fasciculus gracilis of the cat. Brain Res. 117:1–17, 1976.PubMedGoogle Scholar
  96. Horrobin, D. F. The lateral cervical nucleus of the cat; an electrophysiological study. Q. J. Exp. Physiol. 51:351–371, 1966.PubMedGoogle Scholar
  97. Hubel, D. H., and Wiesel, T. N. Functional architecture of macaque monkey visual cortex, Proc. R. Soc. Lond. [Biol] 198:1–59, 1977.Google Scholar
  98. Iwamura, Y., and Inubushi, S. Regional diversity in excitatory and inhibitory receptive-field organization of cat thalamic ventrobasal neurons. J. Neurophysiol. 37:910–919, 1974.PubMedGoogle Scholar
  99. Jäntg, W., Schoultz, T., and Spencer, W. A. Temporal and spatial parameters of excitation and afferent inhibition in cuneothalamic relay neurons. J. Neurophysiol. 40:822–835, 1977.Google Scholar
  100. Jänig, W., Spencer, W. A., and Younkin, S. G. Spatial and temporal features of afferent inhibition of thalamocortical relay cells. J. Neurophysiol. 42:1450–1460, 1979.PubMedGoogle Scholar
  101. Johansson, H., and Silfvenius, H. Axon-collateral activation by dorsal spinocerebellar tract fibers of group I relay cells of nucleus Z in the cat medulla oblongata. J. Physiol. (Lond.) 265:341–369, 1977.Google Scholar
  102. Johnson, J. I., Walker, W. I., and Pubols, B. H. Somatotopic organization of raccoon dorsal column nuclei. J. Comp. Neurol. 132:1–44, 1968.PubMedGoogle Scholar
  103. Jones, E. G. Organization of the thalamocortical complex and its relation to sensory processes, in: Handbook of Physiology, The Nervous System III, (I. Darion-Smith, ed.) American Physiological Society, Bethesda, 1984, pp. 149–212.Google Scholar
  104. Jones, E. G., and Burton, H. Cytoarchitecture and somatic sensory connectivity of thalamic nuclei other than the ventrobasal complex. J. Comp. Neurol. 154:395–432, 1974.PubMedGoogle Scholar
  105. Jones, E. G., and Friedman, D. P. Projection pattern of functional components of thalamic ventrobasal complex on monkey somatosensory cortex. J. Neurophysiol. 48:521–544, 1982.PubMedGoogle Scholar
  106. Jones, E. G., and Leavitt, R. Y. Retrograde axonal transport and the demonstration of nonspecific projections to the central cortex and striatum from thalamic intralaminar nuclei in the rat, cat, and monkey. J. Comp. Neurol 154:349–378, 1974.PubMedGoogle Scholar
  107. Jones, E. G., and Powell, T. P. S. Connexions of the somatic sensory cortex of the rhesus monkey. III. Thalamic connexions. Brain 93:37–56, 1970.PubMedGoogle Scholar
  108. Jones, E. G., Wise. S. P., and Coulter, J. D. Differential thalamic relationships of sensory-motor and parietal cortical fields in monkeys. J. Comp. Neurol. 183:833–882, 1979.PubMedGoogle Scholar
  109. Kaas, J. H. What, if anything, is SI? Organization of first somatosensory area of cortex. Physiol Rev. 63:206–231, 1983.PubMedGoogle Scholar
  110. Kaas, J. H., Nelson, R. J., Sur, M., Lin, G. S., and Merzenich, M. M. Multiple representations of the body within the primary somatosensory complex of primates. Science 204:521–523, 1979.PubMedGoogle Scholar
  111. Kaas, J. H., Nelson, R. J., Sur, M., Dykes, R. W., and Merzenich, M. M. The somatotoptic organization of the ventroposterior thalamus of the squirrel monkey, Saimiri sciureus. J. Comp. Neurol 226:111–140, 1984.PubMedGoogle Scholar
  112. Kenshalo, D. R., Jr., Leonard, R. B., Chung, J. M., and Willis, W. D. Responses of primate spinothalamic neurons to graded and to repeated noxious heat stimuli. J. Neurophysiol. 42:1370–1389, 1979.PubMedGoogle Scholar
  113. Kenshalo, D. R., Jr., and Isensee, O. Responses of primate SI cortical neurons to noxious stimuli. J. Neurophysiol. 50:1479–1496, 1983.PubMedGoogle Scholar
  114. Kenshalo, D. R., Jr., Giesler, G. J., Leonard, R. B., and Willis, W. D. Responses of neurons in primate ventral posterior lateral nucleus to noxious stimuli. J. Neurophysiol. 43:1594–1614, 1980.PubMedGoogle Scholar
  115. Kerr, F. W. L. Neuroanatomical substrates of nociception in the spinal cord. Pain 1:325–356, 1975a.PubMedGoogle Scholar
  116. Kerr, F. W. L. The ventral spinothalamic tract and other ascending systems of the ventral funiculus of the spinal cord. J. Comp. Neurol. 159:335–356, 1975b.PubMedGoogle Scholar
  117. Kerr, F. W. L., and Lippman, H. H. The primate spinothalamic tract as demonstrated by anterolateral cordotomy and commissural myelotomy. Adv. Neurol 4:147–156, 1974.Google Scholar
  118. Kevetter, G. A., and Willis, W. D. Spinothalamic cells in the rat lumbar cord with collaterals to the medullary reticular formation. Brain Res. 238:181–185, 1982.PubMedGoogle Scholar
  119. Kevetter, G. A., and Willis, W. D. Collaterals of spinothalamic cells in the rat. J. Comp. Neurol. 215:453–464, 1983.PubMedGoogle Scholar
  120. Kevetter, G. A., Haber, L. H., Yezierski, R. P., Chung, J. M., Martin, R. F., and Willis, W. D. Cells of origin of the spinoreticular tract in the monkey. J. Comp. Neurol. 207:61–74, 1982.PubMedGoogle Scholar
  121. Kitai, S. T., , H., and Morin, F. Lateral cervical nucleus of the dog: Anatomical and microelectrode studies. Am. J. Physiol 209:307–311, 1965.PubMedGoogle Scholar
  122. Kniffki, K. D., and Mizumura, K. Responses of neurons in VPL and VPL-VL region of the cat to algesic stimulation of muscle and tendon. J. Neurophysiol. 49:649–661, 1983.PubMedGoogle Scholar
  123. Kruger, L., Siminoff, R., and Witkovsky, P. Single neuron analysis of dorsal column nuclei and spinal nucleus of trigeminal in cat. J. Neurophysiol. 24:333–349, 1961.PubMedGoogle Scholar
  124. Kuru, M. Sensory Paths in the Spinal Cord and Brain Stem of Man, Sogensya, Tokyo, 1949.Google Scholar
  125. Kuypers, H. G. J. M., and Tuerk, J. D. The distribution of the cortical fibres within the nuclei cuneatus and gracilis in the cat. J. Anat. 98:143–162, 1964.PubMedGoogle Scholar
  126. Lamour, Y., Guilbaud, G., and Willer, J. C. Rat somatosensory (SmI) cortex. II. Laminar and columnar organization of noxious and non-noxious inputs. Exp. Brain Res. 49:46–54, 1983a.PubMedGoogle Scholar
  127. Lamour, Y., Willer, J. C., and Guilbaud, G. Rat somatosensory (SmI) cortex. I. Characteristics of neuronal responses to noxious stimulation and comparison with responses to non-noxious stimulation. Exp. Brain Res. 49:35–45, 1983b.PubMedGoogle Scholar
  128. Landgren, S., and Silfvenius, H. Projection to cerebral cortex of group I muscle Afferents from the cat’s hind limb. J. Physiol. (Lond.) 200:353–372, 1969.Google Scholar
  129. Landgren, S., and Silfvenius, H. Nucleus Z, the medullary relay in the projection path to the cerebral cortex of group I muscle Afferents from the cat’s hind limb. J. Physiol. (Loud.) 218:551–571, 1971.Google Scholar
  130. Landgren, S. A., Nordwall, A., and Wengström, C. The location of the thalamic relay in the spino—cervical—lemniscal path. Acta Physiol. Scand. 65:164–175, 1965.Google Scholar
  131. Landry, P., and Deschenes, M. Intracortical arborizations and receptive fields of identified ventrobasal thalamocortical Afferents to the primary somatic sensory cortex in the cat. J. Comp. Neurol. 199:345–371, 1981.PubMedGoogle Scholar
  132. Langford, L. A., and Coggeshall, R. E. Unmyelinated axons in the posterior funiculi. Science 211:176–177, 1981.PubMedGoogle Scholar
  133. Levitt, M., and Levitt, J. Sensory hind limb representation in the SmI cortex of the cat after spinal tractotomies. Exp. Neurol. 22:276–302, 1968.PubMedGoogle Scholar
  134. Lin, C. S., Merzentch, M. M., Sur, M., and Kaas, J. H. Connections of areas 3b and 1 of the parietal somatosensory strip with the ventroposterior nucleus in the owl monkey (Aotus tnvirgatus). J. Comp. Neurol. 185:355–372, 1979.PubMedGoogle Scholar
  135. Liu, R. P. C. Laminar origins of spinal projection neurons to periaqueductal gray of the rat. Brain Res. 264:118–122, 1983.PubMedGoogle Scholar
  136. Lloyd, D. P. C., and McIntyre, A. K. Dorsal column conduction of group I muscle afferent impulses and their relay through Clarke’s column. J. Neurophysiol. 13:39–54, 1950.PubMedGoogle Scholar
  137. Loe, P. R., Whitsel, B. L., Dreyer, D. A., and Metz, C. B. Body representation in ventrobasal thalamus of macaque: A single-unit analysis. J. Neurophysiol. 40:1339–1355, 1977.PubMedGoogle Scholar
  138. Lu, G. W., Bennett, G. J., Nishikawa, N., Hoffert, M. J., and Dubner, R. Extra-and intracellular recordings from dorsal column postsynaptic spinomedullary neurons in the cat. Exp. Neurol. 82:456–477, 1983.PubMedGoogle Scholar
  139. Lund, R. D., and Webster, K. E. Thalamic Afferents from the spinal cord and trigeminal nuclei. An experimental anatomical study in the rat. J. Comp. Neurol. 130:313–328, 1967.PubMedGoogle Scholar
  140. Magherini, P. C., Pompeiano, O., and Seguin, J. J. Responses of nucleus Z neurons to vibration of hindlimb extensor muscles in the decerebrate cat. Arch. Hal. Biol. 113:150–187, 1975.Google Scholar
  141. Mantyh, P. W. The terminations of the spinothalamic tract in the cat. Neurosci. Lett. 38:119–124, 1983.PubMedGoogle Scholar
  142. Maunz, R. A., Pitts, N. G., and Peterson, B. W. Cat spinoreticular neurons: Locations, responses and changes in responses during repetitive stimulation. Brain Res. 148:365–379, 1978.PubMedGoogle Scholar
  143. McComas, A.J. Responses of the rat dorsal column system to mechanical stimulation of the hind paw. J. Physiol. (Lond.) 166:435–448, 1963.Google Scholar
  144. McKenna, T. M., Whitsel, B. L., and Dreyer, D. A. Anterior parietal cortical topographic organization in macaque monkey: A reevaluation. J. Neurophysiol. 48:289–317, 1982.PubMedGoogle Scholar
  145. McKenna, T. M., Light, A. R., and Whitsel, B. L. Neurons with unusual response and receptive-field properties in upper laminae of cat SI cortex. J. Neurophysiol. 51:1055–1076, 1984.PubMedGoogle Scholar
  146. Mehler, W. R. The anatomy of the so-called “pain tract” in man: An analysis of the course and distribution of the ascending fibers of the fasciculus anterolateralis, in: Basic Research in Paraplegia (J. D. French and R. W. Porter, eds.), Charles C. Thomas, Springfield, IL, 1962, pp. 26–55.Google Scholar
  147. Mehler, W. R., Feferman, M. E., and Nauta, W. J. H. Ascending axon degeneration following anterolateral cordotomy. An experimental study in the monkey. Brain 83:718–751, 1960.PubMedGoogle Scholar
  148. Mendell, L. M. Physiological properties of unmyelinated fiber projection to the spinal cord. Exp. Neurol. 16:316–332, 1966.PubMedGoogle Scholar
  149. Menetrey, D., Chaouch, A., and Besson, J. M. Location and properties of dorsal horn neurons at origin of spinoreticular tract in lumbar enlargement of the rat. J. Neurophysiol. 44:862–877, 1980.PubMedGoogle Scholar
  150. Menetrey, D., Chaouch, A., Binder, D., and Besson, J. M. The origin of the spinomesencephalic tract in the rat: An anatomical study using the retrograde transport of horseradish peroxidase. J. Comp. Neurol. 206:193–207, 1982.PubMedGoogle Scholar
  151. Merzenich, M. M., Kaas, J. H., Sur, M., and Lin, C. S. Double representation of the body surface within cytoarchitectonic areas 3b and 1 in’ si’ in the owl monkey (Aotus trivirgatus). J. Comp. Neurol. 181:41–73, 1978.PubMedGoogle Scholar
  152. Millar, J., and Basbaum, A. I. Topography of the projection of the body surface of the cat to cuneate and gracile nuclei. Exp. Neurol 49:281–290, 1975.PubMedGoogle Scholar
  153. Milne, R. J., Foreman, R. D., Giesler, G. J., and Willis, W. D. Convergence of cutaneous and pelvic visceral nociceptive inputs onto primate spinothalamic neurons. Pain 11:163–183, 1981.PubMedGoogle Scholar
  154. Mitchell, D., and Hellon, R. F. Neuronal and behavioural responses in rats during noxious stimulation of the tail. Proc. R. Soc. Loud. [Biol] 197:169–194, 1977.Google Scholar
  155. Morin, F. A new spinal pathway for cutaneous impulses. Am. J. Physiol. 183:245–252, 1955.PubMedGoogle Scholar
  156. Mountcastle, V. B. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurophysiol. 20:408–434, 1957.PubMedGoogle Scholar
  157. Mountcastle, V. B. Central nervous mechanisms in mechanoreceptive sensibility, in: Handbook of Physiology, The Nervous System III, (I. Darian-Smith, ed.), American Physiological Society, Bethesda, 1984, pp. 789–878.Google Scholar
  158. Mountcastle, V. B., and Henneman, E. The representation of tactile sensibility in the thalamus of the monkey. J. Comp. Neurol. 97:409–440, 1952.PubMedGoogle Scholar
  159. Mountcastle, V. B., and Powell, T. P. S. Neural mechanisms subserving cutaneous sensibility, with special reference to the role of afferent inhibition in sensory perception and discrimination. Bull Johns Hopkins Hosp. 105:201–232, 1959.PubMedGoogle Scholar
  160. Nathan, P. W., and Smith, M. C. Fasciculi proprii of the spinal cord in man: Review of present knowledge. Brain 82:610–668, 1959.PubMedGoogle Scholar
  161. Nelson, R. J., and Kaas, J. H. Connections of the ventroposterior nucleus of the thalamus with the body surface representations in cortical areas 3b and 1 of the cynomolgus macaque, (Macaca fascicularis). J. Comp. Neurol 199:29–64, 1981.PubMedGoogle Scholar
  162. Nelson, R. J., Sur, M., Felleman, D. J., and Kaas, J. H. Representations of the body surface in postcentral parietal cortex of Macaca fascicularis. J. Comp. Neurol. 192:611–643, 1980.PubMedGoogle Scholar
  163. Nijensohn, D. E., and Kerr, F. W. L. The ascending projections of the dorsolateral funiculus of the spinal cord in the primate. J. Comp. Neurol. 161:459–470, 1975.PubMedGoogle Scholar
  164. Oswaldo-Cruz, E., and Kidd, C. Functional properties of neurons in the lateral cervical nucleus of the cat. J. Neurophysiol. 27:1–14, 1964.PubMedGoogle Scholar
  165. Paul, R. L., Merzen Ich, M., and Goodman, H. Representation of slowly and rapidly adapting cutaneous mechanoreceptors of the hand in Brodmann’s areas 3 and 1 of Macaca mulatta. Brain Res. 36:229–249, 1972.PubMedGoogle Scholar
  166. Penfield, W., and Jasper, H. Epilepsy and the Functional Anatomy of the Human Brain, Little, Brown, Boston, 1954.Google Scholar
  167. Perl, E. R. Pain and nociception, in: Handbook of Physiology, Section 1, Vol. III, Sensory Processes, Part 2 (I. Darian-Smith, ed.), American Physiological Society, Bethesda, 1984, pp. 915–975.Google Scholar
  168. Perl, E. R., and Whitlock, D. G. Somatic stimuli exciting spinothalamic projections to thalamic neurons in cat and monkey. Exp. Neurol 3:256–296, 1961.PubMedGoogle Scholar
  169. Perl, E. R., Whitlock, D. G., and Gentry, J. R. Cutaneous projection to second-order neurons of the dorsal column system. J. Neurophysiol. 25:337–358, 1962.PubMedGoogle Scholar
  170. Peschanski, M., Guilbaud, G., Gautron, M., and Besson, J. M. Encoding of noxious heat messages in neurons of the ventrobasal thalamic complex of the rat. Brain Res. 197:401–413, 1980.PubMedGoogle Scholar
  171. Peschanski, M., Guilbaud, D., and Gautron, M. Posterior intralaminar region in rat: Neuronal responses to noxious and nonnoxious cutaneous stimuli. Exp. Neurol 72:226–238, 1981.PubMedGoogle Scholar
  172. Peschanski, M., Mantyh, P. W., and Besson, J. M. Spinal Afferents to the ventrobasal thalamic complex in the rat: An anatomical study using wheatgerm agglutinin conjugated to horseradish peroxidase. Brain Res. 278:240–244, 1983.PubMedGoogle Scholar
  173. Petit, D., and Burgess, P. R. Dorsal column projection of receptors in cat hairy skin supplied by myelinated fibers. J. Neurophysiol. 31:849–855, 1968.PubMedGoogle Scholar
  174. Phillips, C. G., Powell, T. P. S., and Wiesendanger, M. Projection from low-threshold muscle Afferents of hand and forearm to area 3a of baboon’s cortex. J. Physiol (Lond.) 21:419–446, 1971.Google Scholar
  175. Poggio, G. F., and Mountcastle, V. B. A study of the functional contributions of the lemniscal and spinothalamic systems to somatic sensibility. Bull. Johns Hopkins Hosp. 106:266–316, 1960.PubMedGoogle Scholar
  176. Poggio, G. F., and Mountcastle, V. B. The functional properties of ventrobasal thalamic neurons studied in unanesthetized monkeys. J. Neurophysiol. 26:775–806, 1963.PubMedGoogle Scholar
  177. Pollin, B., and Albe-Fessard, D. Organization of somatic thalamus in monkeys with and without section of dorsal spinal tracts. Brain Res. 173:431–449, 1979.PubMedGoogle Scholar
  178. Pompeiano, O., and Brodal, A. Spino-vestibular fibers in the cat; an experimental study. J. Comp. Neurol. 108:353–382, 1957.PubMedGoogle Scholar
  179. Powell, T. P. S., and Mountcastle, V. B. The cytoarchitecture of the postcentral gyrus of the monkey Macaca mulatta. Bull. Johns Hopkins Hosp. 105:108–131, 1959a.PubMedGoogle Scholar
  180. Powell, T. P. S., and Mountcastle, V. B. Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: A correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull. Johns Hopkins Hosp. 105:133–162, 1959b.PubMedGoogle Scholar
  181. Price, D. D., Hayes, R. L., Ruda, M. A., and Dubner, R. Spatial and temporal transformation of input to spinothalamic tract neurons and their relation to somatic sensations. J. Neurophysiol. 41:933–947, 1978.PubMedGoogle Scholar
  182. Pubols, B. H., Welker, W. I., and Johnson, J. I. Somatic sensory representation of forelimb in dorsal root fibers of raccoon, coatimundi, and cat. J. Neurophysiol. 28:312–341, 1965.PubMedGoogle Scholar
  183. Pubols, L. M. Somatic sensory representation in the thalamic ventrobasal complex of the spider monkey (Ateles). Brain Behav. Evol. 1:305–323, 1968.Google Scholar
  184. Pubols, L. M., and Pubols, B. H. Modality composition and functional characteristics of dorsal column mechanoreceptive afferent fibers innervating the raccoon’s forepaw. J. Neurophysiol. 36:1023–1037, 1973.PubMedGoogle Scholar
  185. Rasmussen, A. T., and Peyton, W. T. The course and termination of the medial lemniscus in man. J. Comp. Neurol. 88:411–424, 1948.PubMedGoogle Scholar
  186. Rosen, I. Afferent connexions to group I activated cells in the main cuneate nucleus of the cat. J. Physiol. (Lond.) 205:209–236, 1969.Google Scholar
  187. Rosen, I., and Sjolund, B. Organization of group I activated cells in the main and external cuneate nuclei of the cat: Identification of muscle receptors. Exp. Brain Res. 16:221–237, 1973.PubMedGoogle Scholar
  188. Rustioni, A. Non-primary Afferents to the nucleus gracilis from the lumbar cord of the cat. Brain Res. 51:81–85, 1973.PubMedGoogle Scholar
  189. Rustioni, A. Non-primary Afferents to the cuneate nucleus in the brachial dorsal funiculus of the cat. Brain Res. 75:247–259, 1974.PubMedGoogle Scholar
  190. Rustioni, A., and Kaufman, A. B. Identification of cells of origin of nonprimary Afferents to the dorsal column nuclei of the cat. Exp. Brain Res. 27:1–14, 1977.PubMedGoogle Scholar
  191. Rustioni, A., and MacChi, G. Distribution of dorsal root fibers in the medulla oblongata of the cat. J. Comp. Neurol. 134:113–126, 1968.PubMedGoogle Scholar
  192. Rustioni, A., and Sotelo, C. Synaptic organization of the nucleus gracilis of the cat. Experimental identification of dorsal root fibers and cortical Afferents. J. Comp. Neurol. 155:441–468, 1974.PubMedGoogle Scholar
  193. Rustioni, A., Hayes, N. L., and O’neill, S. Dorsal column nuclei and ascending spinal Afferents in macaques. Brain 102:95–125, 1979.PubMedGoogle Scholar
  194. Shriver, J. E., Stein, B. M., and Carpenter, M. B. Central projections of spinal dorsal roots in the monkey. I. Cervical and upper thoracic dorsal roots. Am. J. Anal. 123:27–74, 1968.Google Scholar
  195. Spreafico, R., Hayes, N. L., and Rustioni, A. Thalamic projections to the primary and secondary somatosensory cortices in cat: Single and double retrograde tracer studies. J. Comp. Neurol. 203:67–90, 1981.PubMedGoogle Scholar
  196. Sretavan, D., and Dykes, R. W. The organization of two cutaneous submodalities in the forearm region of area 3b of cat somatosensory cortex. J. Comp. Neurol. 213:381–398, 1983.PubMedGoogle Scholar
  197. Sur, M. Receptive fields of neurons in areas 3b and 1 of somatosensory cortex in monkeys. Brain Res. 198:465–471, 1980.PubMedGoogle Scholar
  198. Sur, M., Merzenich, M. M., and Kaas, J. H. Magnification, receptive-field area, and “hyper-column” size in areas 3b and 1 of somatosensory cortex in owl monkeys. J. Neurophysiol. 44:295–311, 1980.PubMedGoogle Scholar
  199. Sur, M., Wall, J. T., and Kaas, J. H. Modular segregation of functional cell classes within the postcentral somatosensory cortex of monkeys. Science 212:1059–1061, 1981.PubMedGoogle Scholar
  200. Tanji, J., and Wise, S. P. Submodality distribution in sensorimotor cortex of the unanesthetized monkey. J. Neurophysiol. 45:467–481, 1981.PubMedGoogle Scholar
  201. Trevino, D. L. The origin and projections of a spinal nociceptive and thermoreceptive pathway, in: Sensory Functions of the Skin in Primates, with Special Reference to Man (Y. Zotterman, ed.), Pergamon Press, New York, 1976, pp. 367–376.Google Scholar
  202. Trevino, D. L., and Carstens E. Confirmation of the location of spinothalamic neurons in the cat and monkey by the retrograde transport of horseradish peroxidase. Brain Res. 98:177–182, 1975.PubMedGoogle Scholar
  203. Trevino, D. L., Maunz, R. A., Bryan, R. N., and Willis, W. D. Location of cells of origin of the spinothalamic tract in the lumbar enlargement of cat. Exp. Neurol. 34:64–77, 1972.PubMedGoogle Scholar
  204. Trevino, D. L., Coulter, J. D., and Willis, W. D. Location of cells of origin of spinothalamic tract in lumbar enlargement of the monkey. J. Neurophysiol. 36:750–761, 1973.PubMedGoogle Scholar
  205. Uddenberg, N. Differential localization in dorsal funiculus of fibres originating from different receptors. Exp. Brain Res. 4:367–376, 1968a.PubMedGoogle Scholar
  206. Uddenberg, N. Functional organization of long, second-order Afferents in the dorsal funiculus. Exp. Brain Res. 4:377–382, 1968b.PubMedGoogle Scholar
  207. Valverde, F. The pyramidal tract in rodents. A study of its relations with the posterior column nuclei, dorsolateral reticular formation of the medulla oblongata and cervical spinal cord (Golgi and electron microscopic observations). Z. Zeilforsch. 71:297–363, 1966.Google Scholar
  208. Walberg, F. Axoaxonic contacts in the cuneate nucleus, probable basis for presynaptic depolarization. Exp. Neurol. 13:218–231, 1965.PubMedGoogle Scholar
  209. Walker, A. E., and Weaver, T. A. The topical organization and termination of the fibers of the posterior columns in Macaca mulatta. J. Comp. Neurol. 76:145–158, 1942.Google Scholar
  210. Weaver, T. A., and Walker, A. E. Topical arrangement within the spinothalamic tract of the monkey. Arch. Neurol. Psychiatry 46:877–883, 1941.Google Scholar
  211. Whitsel, B. L., Petrucelli, L. M., and Sapiro, G. Modality representation in the lumbar and cervical fasciculus gracilis of squirrel monkeys. Brain Res. 15:67–78, 1969.PubMedGoogle Scholar
  212. Whitsel, B. L., Petrucelli, L. M., Sapiro, G., and He, H. Fiber sorting in the fasciculus gracilis of squirrel monkeys. Exp. Neurol. 29:227–242, 1970.PubMedGoogle Scholar
  213. Whitsel, B. L., Dreyer, D. A., and Roppolo, J. R. Determinants of body representation in postcentral gyrus of macaques. J. Neurophysiol. 34:1018–1034, 1971.PubMedGoogle Scholar
  214. Whitsel, B. L., Rustioni, A., Dreyer, D. A., Loe, P. R., Allen, E. E., and Metz, C. B. Thalamic projections to S-I in macaque monkey. J. Comp. Neurol. 178:385–410, 1978.PubMedGoogle Scholar
  215. Willis, W. D., and Coggeshall, R. E. Sensory Mechanisms of the Spinal Cord, New York, Plenum Press, 1978.Google Scholar
  216. Willis, W. D., Kenshalo, D. R., and Leonard, R. B, The cells of origin of the primate spinothalamic tract. J. Comp. Neurol. 188:543–574, 1979.PubMedGoogle Scholar
  217. Woolsey, C. N. Organization of somatic sensory and motor areas of the cerebral cortex, in: Biological and Biochemical Bases of Behavior (H. F. Harlow and C. N. Woolsey, eds.), University of Wisconsin Press, Madison, 1958, pp. 63–81.Google Scholar
  218. Yezierski, R. P., and Schwartz, R. H. Receptive field properties of spinomesencephalic tract (SMT) cells. Pain [Suppl.] 2:184, 1984.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • William D. WillisJr.
    • 1
  1. 1.Marine Biomedical Institute and Departments of Physiology and Biophysics and AnatomyUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations