Spinal Substrates of Visceral Pain

  • Robert D. Foreman


Visceral pain is a common finding of patients who require medical attention. Yet, neurophysiological mechanism underlying visceral pain, associated referred pain, and parietal pain have not been vigorously pursued (Cervero, 1983a). Several theories have been proposed to explain visceral pain, but only recently they have been reexamined using techniques that were developed to study the spinothalamic tract or dorsal horn cells with ascending projections. The spinothalamic tract (STT) in anesthetized monkeys has provided new insights to the mechanisms of visceral pain and referred pain.


Afferent Fiber Vagal Stimulation Coronary Artery Occlusion Visceral Pain Vagal Afferents 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammons, W. S., Blair, R. W., and Foreman, R. D. Vagal afferent inhibition of primate T1—T5 spinothalamic neurons. J. Neurophysiol. 50:926–940, 1983a.PubMedGoogle Scholar
  2. Ammons, W. S., Blair, R. W., and Foreman, R. D. Vagal afferent inhibition of spinothalamic cell responses to sympathetic Afferents and bradykinin in the monkey. Circ. Res. 53:603–612, 1983b.PubMedGoogle Scholar
  3. Ammons, W. S., Blair, R. W., and Foreman, R. D. Greater splanchnic excitation of primate T1—T5 spinothalamic neurons. J. Neurophysiol. 51:592–603, 1984a.PubMedGoogle Scholar
  4. Ammons, W. S., Blair, R. W., and Foreman, R. D. Raphe magnus inhibition of primate T1—T4 spinothalamic cells with cardiopulmonary visceral input. Pain 20:247–260, 1984b.PubMedGoogle Scholar
  5. Bahr, R., Blumberg, H., and Janig, W. Do dichotomizing afferent fibers exist which supply visceral organs as well as somatic structures? A contribution to the problem of referred pain. Neurosci. Lett. 24:25–28, 1981.PubMedGoogle Scholar
  6. Baker, D. G., Coleridge, H. M., and Coleridge, J. C. G. Vagal afferent C fibres from the ventricle, in: Cardiac Receptors (R. Hainsworth, C. Kidd, and R.J. Linden, eds.) Cambridge University Press, Cambridge, 1979, pp. 117–137.Google Scholar
  7. Baker, D. G., Coleridge, H. M., Coleridge, J. C. G., and Nerdrum, T. Search for a cardiac nociceptor: Stimulation by bradykinin of sympathetic afferent nerve endings in the heart of the cat. J. Physiol. (Lond.) 306:519–536, 1980.Google Scholar
  8. Beall, J. E., Martin, R. F., Applebaum, A. E., and Willis, W. D. Inhibition of primate spinothalamic tract neurons by stimulation in the region of the nucleus raphe magnus. Brain Res. 114:328–333, 1976.PubMedGoogle Scholar
  9. Beckstead, R. M., and Norgren, R. An autoradiographic examination of the central distribution of the trigeminal facial, glossopharyngeal and vagus nerves in the monkey. J. Comp. Neurol. 184:455–472, 1979.PubMedGoogle Scholar
  10. Blair, R. W. Noxious cardiac input onto neurons in medullary reticular formation. Brain Res. 326:335–346, 1985.PubMedGoogle Scholar
  11. Blair, R. W., Weber, R. N., and Foreman, R. D. Characteristics of primate spinothalmic tract neurons receiving viscerosomatic convergent inputs in T3—T5 segments. J. Neurophysiol. 46:797–811, 1981a.PubMedGoogle Scholar
  12. Blair, R. W., Weber, R. N., and Foreman, R. D. Response of spinal cord neurons to electrically-induced arrhythmias. Fed. Proc. 40:321, 1981b.Google Scholar
  13. Blair, R. W., Holmes, H. R., and Foreman, R. D. Excitation of feline thoracic spinal neurons by cardiac arrhythmias. Physiologist 25:322, 1982a.Google Scholar
  14. Blair, R. W., Weber, R. N., and Foreman, R. D. Responses of thoracic spinothalamic neurons to intracardiac injection of bradykinin the the monkey. Circ. Res. 51:83–94, 1982b.PubMedGoogle Scholar
  15. Blair, R. W., Ammons, W. S., and Foreman, R. D. Responses of thoracic spinothalamic and spinoreticular cells to coronary artery occlusion. J. Neurophysiol. 51:636–648, 1984.PubMedGoogle Scholar
  16. Boyden, E. A., and Rigler, L. G. Localization of pain accompanying faradic excitation of stomach and duodenum in healthy individuals. J. Clin. Invest. 13:833–851, 1934.PubMedGoogle Scholar
  17. Brown, A. M. Excitation of afferent cardiac sympathetic nerve fibres during myocardial ischaemia. J. Physiol. (Lond.) 190:35–53, 1967.Google Scholar
  18. Brown, A. M. Cardiac reflexes, in: Handbook of Physiology, Vol. 1, The Cardiovascular System, The Heart (R. M. Berne, ed.), American Physiological Society, Bethesda, 1979, pp. 677–689.Google Scholar
  19. Brown, A. M., and Malliani, A. Spinal sympathetic reflexes initiated by coronary receptors. J. Physiol. (Lond.) 212:685–705, 1971.Google Scholar
  20. Carstens, E. Inhibition of spinal dorsal horn neuronal responses to noxious skin heating by medial hypothalamic stimulation in the cat. J. Neurophysiol. 48:808–822, 1982.PubMedGoogle Scholar
  21. Carstens, E., Yokota, T., and Zimmermann, M. Inhibition of spinal neuronal responses to noxious skin heating by stimulation of mesencephalic periaqueductal gray in the cat. J. Neurophysiol. 42:558–568, 1979.PubMedGoogle Scholar
  22. Carstens, E., Fraunhoffer, M., and Zimmermann, M. Serotonergic mediation of descending inhibition from midbrain periaqueductal gray, but not reticular formation, of spinal nociceptive transmission in the cat. Pain 10:149–167, 1981.PubMedGoogle Scholar
  23. Casati, R., Lombardi, F., and Malliani, A. Afferent sympathetic unmyelinated fibres with left ventricular endings in cats. J. Physiol. (Lond.) 292:135–148, 1979.Google Scholar
  24. Cervero, F. Mechanisms of visceral pain, in: Persistent Pain, Vol. 4, (S. Lipton and J. Miles, eds.), Grune & Stratton, London, 1983a, pp. 1–19.Google Scholar
  25. Cervero, F. Somatic and visceral inputs in to the thoracic spinal cord of the cat: Effects of noxious stimulation of the biliary system. J. Physiol. (Lond.) 337:51–67, 1983b.Google Scholar
  26. Christie, L. G., and Conti, C. R. Systematic approach to evaluation of angina-like chest pain: Pathophysiology and clinical testing with emphasis on objective documentation of myocardial ischemia. Am. Heart J. 102:897–912, 1981.PubMedGoogle Scholar
  27. Coleridge, H. M., Coleridge, J. C. G., Dangel, A., Kidd, C., Luck, J. C., and Sleight, P. Impulses in slowly conducting vagal fibers from afferent endings in the veins atria, and arteries of dogs and cats. Circ. Res. 33:87–97, 1973.PubMedGoogle Scholar
  28. Coleridge, H. M., Coleridge, J. C. G., and Kidd, C. Afferent innervation of the heart and great vessels: A comparison of the vagal and sympathetic components. Acta Physiol. Pol. 29(Suppl.):55–79, 1978.PubMedGoogle Scholar
  29. Coleridge, J. C. G., Hemingway, A., Holmes, R. L., and Linden, R. J. The location of artial receptors in the dog: A physiological and histological study. J. Physiol. (Lond.) 136:174–197, 1957.Google Scholar
  30. Davis, L., Pollack, L. J., and Stone, T. T. Visceral pain. Surg. Gynaecol. Obstet. 55:418–427, 1932.Google Scholar
  31. Dubner, R., Price, D. D., Beitel, R. E., and Hu, J. W. Peripheral neural correlates of behavior in monkey and human related to sensory-discriminative aspects of pain, in: Pain in the Trigeminal Region, (D. J. Anderson and B. Matthews, eds.), Elsevier/North Holland, Amsterdam, 1977, pp. 57–66.Google Scholar
  32. Eckenhoff, J. E., and Oech, S. R. Effects of narcotics and antagonists upon respiration and circulation in man. Clin. Pharmacol. Ther. 1:483–524, 1960.PubMedGoogle Scholar
  33. Fields, H. L., Meyer, G. A., and Partridge, L. D., Jr. Convergence of visceral and somatic inputs onto spinal neurons. Exp. Neurol. 26:36–52, 1970.PubMedGoogle Scholar
  34. Fields, H. L., Basbaum, A. I., Clanton, C. H., and Anderson, S. D. Nucleus raphe magnus inhibition of spinal cord dorsal horn neurons. Brain Res. 126:441–453, 1977.PubMedGoogle Scholar
  35. Foreman, R. D., and Ohata, C. A. Effects of coronary artery occlusion of thoracic spinal neurons receiving viscerosomatic inputs. Am. J. Physiol. 238:H667–H679, 1980.PubMedGoogle Scholar
  36. Foreman, R. D., Applebaum, A. E., Beall, J. E., Trevino, D. L., and Willis, W. D. Responses of primate spinothalamic tract neurons to electrical stimulation of hindlimb peripheral nerves. J. Neurophysiol. 38:132–145, 1975.PubMedGoogle Scholar
  37. Foreman, R. D., Beall, J. E., Applebaum, A. E., Coulter, J. D., and Willis, W. D. Effects of dorsal column stimulation on primate spinothalamic tract neurons. J. Neurophysiol. 39:534–546, 1976.PubMedGoogle Scholar
  38. Foreman, R. D., Hancock, M. B., and Willis, W. D. Responses of spinothalamic tract cells in the thoracic spinal cord of the monkey to cutaneous and visceral inputs. Pain 11:149–162, 1981.PubMedGoogle Scholar
  39. Gerhart, K. D., Wilcox, T. K., Chung, J. M., and Willis, W. D. Inhibition of nociceptive and non-nociceptive responses of primate spinothalamic cells by stimulation in medial brain stem. J. Neurophysiol. 45:121–136, 1981.PubMedGoogle Scholar
  40. Gokin, A. P., Kostyuk, P. G., and Preobrazhensky, N. N. Neuronal mechanisms of interactions of high-threshold visceral and somatic afferent influences in spinal cord and medulla. J. Physiol. (Paris) 73:319–333, 1977.Google Scholar
  41. Guilbald, G., Benelli, G., and Besson, J. M. Response of thoracic dorsal horn interneurones to cutaneous stimulation and to the administration of algogenic substances into the mesenteric artery in the spinal cat. Brain Res. 124:437–448, 1977.Google Scholar
  42. Guzman, F., Braun, G., and Lim, R. K. S. Visceral pain and the pseudaffective response to intraarterial injection of bradykinin and other algesic agents. Arch. Int. Pharmacodyn. Ther. 136:353–383, 1962.PubMedGoogle Scholar
  43. Gybels, J., Handwerker, H. O., and van Hees, J. A comparison between the discharges of human nociceptive nerve fibres and the subject’s ratings of his sensations. J. Physiol. (Lond.) 292:193–206, 1979.Google Scholar
  44. Haber, L. H., Martin, R. F., Chatt, A. B., and Willis, W. D. Effects of stimulation in nucleus reticularis gigantocellularis on the activity of spinothalamic tract neurons in the monkey. Brain Res. 153:163–168, 1978.PubMedGoogle Scholar
  45. Haber, L. H., Martin, R. F., Chung, J. M., and Willis, W. D. Inhibition and excitation of primate spinothalamic tract neurons by stimulation in region of nucleus reticularis gigantocellularis. J. Neurophysiol. 43:1578–1593, 1980.PubMedGoogle Scholar
  46. Hampton, A. G., Beckwith, J. R., and Wood, J. E., Jr. The relationship between heart disease and gall bladder disease. Ann. Intern. Med. 50:1135–1148, 1959.PubMedGoogle Scholar
  47. Hancock, M. B., Foreman, R. D., and Willis, W. D. Convergence of visceral and cutaneous input onto spinothalamic tract cells in the thoracic spinal cord of the cat. Exp. Neurol. 47:240–248, 1975.PubMedGoogle Scholar
  48. Harrison, T. R., and Reeves, R. J. Principles and Problems of Ischemic Heart Disease, Year Book Medical Publishers, Chicago, 1968, pp. 197–204.Google Scholar
  49. Hashimoto, K., Hirose, M., Furukawa, S., Haykawa, H., and Kimura, E. Changes in hemodynamics and bradykinin concentration in coronary sinus blood in experimental coronary artery occlusion. Jpn. Heart J. 18:679–689, 1977.PubMedGoogle Scholar
  50. Head, H. On disturbances of sensation with special reference to the pain of visceral disease. Brain 16:1–133, 1893.Google Scholar
  51. Henderson, R. D., Wigle, E. D., Sample, K., and Manyat, G. Atypical chest pain of cardiac and esophageal origin. Chest 73:24–41, 1978.PubMedGoogle Scholar
  52. Hoffman, D. S., Dubnar, R., Hayes, R. L., and Medlin, T. P. Neuronal activity in medullary dorsal horn of awake monkeys trained in the thermal discrimination task. I. Responses to innocuous and noxious thermal stimuli. J. Neurophysiol. 46:409–427, 1981.PubMedGoogle Scholar
  53. Holmes, H. R., Armour, J. A., Chapman, C. D., Foreman, R. D., and Blair, R. W. Receptor mechanics of cardiovascular Afferents. Physiologist. 25:236, 1982.Google Scholar
  54. Holmes, H. R., Chapman, C. D., Armour, J. A., and Foreman, R. D. Receptive field mechanics of left ventricular sympathetic afferent fibers. Fed. Proc. 42:1119, 1983.Google Scholar
  55. Kaufman, M. P., Baker, D. G., Coleridge, H. M., and Coleridge, J. C. G. Stimulation by bradykinin of afferent vagal C-fibers with chemosensitive endings in the heart and aorta of the dog. Circ. Res. 46:476–484, 1980.PubMedGoogle Scholar
  56. Kimura, E., Hashimoto, K., Furukawa, S., and Hayakawa, H. Changes in bradykinin level in coronary sinus blood after the experimental occlusion of coronary artery. Am. Heart J. 85:635–647, 1973.PubMedGoogle Scholar
  57. Kostreva, D. R., Zuperku, E. J., Hess, R. L., Coon, R. L., and Kampine, J. P. Pulmonary afferent activity recorded from sympathetic nerves. J. Appl. Physiol. 39:37–40, 1975.PubMedGoogle Scholar
  58. LaMotte, R. H., and Campbell, J. N. Comparison of responses of warm and nociceptive C-fiber Afferents in monkey with human judgments of thermal pain. J. Neurophysiol. 41:509–528, 1978.PubMedGoogle Scholar
  59. Langhorst, P., Schulz, B., Schulz, G., and Lambertz, M. Reticular formation of the lower brainstem. A common system for cardio-respiratory and somatomotor functions: Discharge patterns of neighboring neurons influenced by cardiovascular and respiratory Afferents. J. Autonom. Nerv. Syst. 9:411–432, 1983.Google Scholar
  60. Langley, J. N. The autonomic nervous system. Brain 26:1–26, 1903.Google Scholar
  61. Lewis, T. Pain, Macmillan, London, 1942, p. 192.Google Scholar
  62. Loewy, A. D., and Burton, H. Nuclei of the solitary tract: Efferent projections to the lower brain stem and spinal cord of the cat. J. Comp. Neurol. 181:421–450, 1978.PubMedGoogle Scholar
  63. Lombardi, F., Malliani, A., and Pagani, M. Nervous activity of afferent sympathetic fibers innervating the pulmonary veins. Brain Res. 113:197–200, 1976.PubMedGoogle Scholar
  64. Lombardi, F., Della Bella. P., Casati, R., and Malliani, A. Effects of intracoronary administration of bradykinin on the impulse activity of afferent sympathetic unmyelinated fibers with left ventricular endings in the cat. Circ. Res. 48:69–75, 1981.PubMedGoogle Scholar
  65. MacKenzie, J. Symptoms and Their Interpretation, Shaw & Sons, London, 1909.Google Scholar
  66. Malliani, A. Cardiovascular sympathetic afferent fibers. Rev. Physiol. Biochem. Pharmacol. 94:11–74, 1982.Google Scholar
  67. Malliani, A., and Lombardi, F. Consideration of the fundamental mechanisms eliciting cardiac pain. Am. Heart J. 103:575–578, 1982.PubMedGoogle Scholar
  68. Malliani, A., and Pagani, M. Afferent sympathetic nerve fibres with aortic endings. J. Physiol. (Lond.) 263:157–169, 1976.Google Scholar
  69. Malliani, A., Peterson, D. F., Bishop, V. S., and Brown, A. M. Spinal sympathetic cardiocardiac reflexes. Circ. Res. 30:158–166, 1972.PubMedGoogle Scholar
  70. Malliani, A., Recordati, G., and Schwartz, P. J. Nervous activity of afferent cardiac sympathetic fibres with atrial and ventricular endings. J. Physiol. (Lond.) 229:457–469, 1973.Google Scholar
  71. Malliani, A., Lombardi, F., Pagani, M., Recordati, G., and Schwartz, P.J. Spinal cardiovascular reflexes. Brain Res. 87:239–246, 1975.PubMedGoogle Scholar
  72. Margolis, J. R., Kannel, W. S., Feinleib, M., Dawber, T. R., and McNamara, P. W. Clinical features of unrecognized myocardial infarction—silent and symptomatic: Eighteen year followup: The Framingham Study. Am. J. Cardiol. 32:1–7, 1973.PubMedGoogle Scholar
  73. Master, A. M., and Geller, A.J. The extent of completely asymptomatic coronary artery disease. Am. J. Cardiol. 23:173–179, 1969.PubMedGoogle Scholar
  74. McCreery, D. B., Bloedel, J. R., and Harnes, E. G. Effects of stimulating in raphe nuclei and in reticular formation on response of spinothalamic neurons to mechanical stimuli. J. Neurophysiol. 42:166–182, 1979.PubMedGoogle Scholar
  75. McLeod, J. G. The representation of splanchnic afferent pathways in the thalamus of the cat. J. Physiol. (Lond.) 140:462–478, 1958.Google Scholar
  76. Miller, H. R. The interrelationship of disease of coronary arteries and gall bladder. Am. Heart J. 24:579–587, 1942.Google Scholar
  77. Milne, R. J., Foreman, R. D., Giesler, G. J., Jr., and Willis, W. D. Convergence of cutaneous and pelvic viserai nociceptive inputs onto primate spinothalamic neurons. Pain 11:163–183, 1981.PubMedGoogle Scholar
  78. Mountcastle, V. B. Pain and temperature sensibilities, in: Medical Physiology, ed. 14 (V. B. Mountcastle, ed.). C. V. Mosby, St. Louis, 1980, pp. 391–427.Google Scholar
  79. Muers, M. F., and Sleight, O. Action potentials from ventricular mechanoreceptors stimulated by occlusion of the coronary sinus in the dog. J. Physiol. (Lond.) 221:283–309, 1972.Google Scholar
  80. Nishi, K., Sakanashi, M., and Takenaka, F. Afferent fibres from pulmonary arterial baroreceptors in the left cardiac sympathetic nerve of the cat. J. Physiol. (Lond.) 240:53–66, 1974.Google Scholar
  81. Nishi, K., Sakanashi, M., and Takenaka, F. Activation of afferent cardiac sympathetic nerve fibres of the cat by pain producing substances and by noxious heat. Pfluegers Arch. 372:53–61, 1977.Google Scholar
  82. Oberg, B., and Thorén, P. Circulatory responses to stimulation of medullated and non-medullated Afferents in the cardiac nerve in the cat. Acta Physiol. Scand. 87:121–132, 1973.PubMedGoogle Scholar
  83. Paintal, A. S. Vagal sensory receptors and their reflex effects. Physiol. Rev. 53:159–227, 1973.PubMedGoogle Scholar
  84. Palmer, E. D. Chest pain of colon origin. Gastroenterologia 90:15–21, 1958.PubMedGoogle Scholar
  85. Pomeranz, B., Wall, P. D., and Weber, W. V. Cord cells responding to fine myelinated Afferents from viscera, muscle and skin. J. Physiol. (Lond.) 199:511–532, 1968.Google Scholar
  86. Ravdin, I. S., Fitz-Hugh, T., Jr., Wolferth, C. C., Barbieri, E. A., and Ravdin, R. G. Relation of gallstone disease to angina pectoris. Arch. Surg. 70:333–342, 1955.Google Scholar
  87. Ricardo, J. A., and Koh, E. T. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala and other forebrain structures in the rat. Brain Res. 153:1–26, 1978.PubMedGoogle Scholar
  88. Ruch, T. C. Pathophysiology of pain, in: Neurophysiology (T. C. Ruch, H. D. Patton, J. W. Woodbury, and A. L. Towe, eds). W. B. Saunders, Philadelphia, 1961, pp.350–368.Google Scholar
  89. Schere, D., and Boyd, L. J. Cardiovascular Diseaes. Grune & Stratton, New York, 1958, pp. 637–638.Google Scholar
  90. Scmidt, R. F. Presynaptic inhibition in the vertebrate central nervous system. Ergeh. Physiol. 63:20–101, 1971.Google Scholar
  91. Schwartz, P. J., Pagani, M., Lombardi, F., Malliani, A., and Brown, A. M. A cardiocardiac sympathovagal reflex in the cat. Circ. Res. 32:215–220, 1973.PubMedGoogle Scholar
  92. Seagard, J. L., Pederson, H. J., Kostreva, D. R., van Horn, D. L., Cusik, J. F., and Kampine, J. P. Ultrastructural identification of afferent fibers of cardiac origin in thoracic sympathetic nerves in the dog. Am. J. Anat. 153:217–232, 1978.PubMedGoogle Scholar
  93. Selzer, M., and Spencer, W. A. Convergence of visceral and cutaneous afferent pathways in the lumbar spinal cord. Brain Res. 14:331–348, 1969.PubMedGoogle Scholar
  94. Sinclair, D. C., Weddell, G., and Feindel, W. H. Referred pain and associated phenomena. Brain 71:184–212, 1948.PubMedGoogle Scholar
  95. Sleight, P., and Widdicombe, J. G. Action potentials of the dog’s left ventricle. J. Physiol. (Lond.) 181:235–258, 1965.Google Scholar
  96. Sole, M. J., Versteeg, D. H. G., Dekloet, E. R., Hussain, N., and Lixfeld, W. The identification of specific serotonergic nuclei inhibited by cardiac vagal Afferents during acute myocardial ischemia in the rat. Brain Res. 265:55–61, 1983.PubMedGoogle Scholar
  97. Sturge, W. A. The phenomena of angina pectoris and their bearing upon the theory of counterirritation. Brain 5:492–510, 1883.Google Scholar
  98. Thames, M. D., Donald, D. E., and Shepherd, J. T. Behavior of cardiac receptors with nonmyelinated vagal Afferents during spontaneous respiration in cats. Circ. Res. 41:694–701, 1977.PubMedGoogle Scholar
  99. Theobald, G. W. The role of the cerebral cortex in the apperception of pain. Lancet 2:41–47, 94-97, 1949.PubMedGoogle Scholar
  100. Thorén, P. N. Activation of left ventricular receptors with nonmedullated vagal afferent fibers during occlusion of a coronary artery in the cat. Am. J. Cardiol. 37:1046–1051, 1976.PubMedGoogle Scholar
  101. Thorén, P. N. Characteristics of left ventricular receptors with nonmedullated vagal Afferents in cats. Circ. Res. 40:415–421, 1977.PubMedGoogle Scholar
  102. Thorén, P. N. Role of cardiac vagal C-fibers in cardiovascular control. Rev. Physiol. Biochem. Pharmacol. 86:1–94, 1979.PubMedGoogle Scholar
  103. Thorén, P. N., Donald, D. E., and Shepherd, J. T. Role of heart and lung receptors with nonmedullated vagal Afferents in circulatory control. Circ. Res. 38:(Suppl. II)II2–II9, 1976.Google Scholar
  104. Torebjörk, H. E., and Hallin, R. G. Identification of afferent C units in intact human skin nerves. Brain Res. 67:387–403, 1974.PubMedGoogle Scholar
  105. Uchida, Y. Afferent sympathetic nerve fibers with mechanoreceptors in the right heart. Am. J. Physiol. 228:223–230, 1975a.PubMedGoogle Scholar
  106. Uchida, Y. Afferent aortic nerve fibers with their pathways in cardiac sympathetic nerves. Am. J. Phsyiol. 228:990–995, 1975b.Google Scholar
  107. Uchida, Y., and Murao, S. Excitation of afferent cardiac sympathetic nerve fibers during coronary occlusion. Am. J. Physiol. 226:1094–1099, 1974a.PubMedGoogle Scholar
  108. Uchida, Y., and Murao, S. Bradykinin induced excitation of afferent cardiac sympathetic nerve fibers. Jpn. Heart J. 15:84–91, 1974b.PubMedGoogle Scholar
  109. Ueda, H., Uchida, Y., and Kamisaka, K. Distribution and responses of the cardiac sympathetic receptors to mechanically induced circulatory changes. Jpn. Heart J. 10:70–81, 1969.PubMedGoogle Scholar
  110. Uretsky, B. F., Farqubar, D. S., Berezin, A. F., and Hood, W. G., Jr. Symptomatic myocardial infarction without chest pain: Prevelance and clincial course. Am. J. Cardiol. 40:498–503, 1977.PubMedGoogle Scholar
  111. van Hees, J., and Gybels, J. M. Cnociceptor activity in human nerve during painful and nonpainful skin stimulation. J. Neurol. Neurosurg. Psychiatry 44:600–607, 1981.PubMedGoogle Scholar
  112. Wehrmacher, E. H. Pain in the Chest, Charles C. Thomas, Springfield, IL, 1964, pp. 342–361.Google Scholar
  113. Weiss, S., and Davis, D. The significance of the afferent impulses from the skin in the mechanism of visceral pain. Skin infiltration as useful therapeutic measure. Am. J. Med. Sci. 176:517–536, 1928.Google Scholar
  114. White, J. C. Conduction of visceral pain. N. Engl. J. Med. 246:686–691, 1952.PubMedGoogle Scholar
  115. White, J. C., Garrey, W. E., and Atkins, J. A. Cardiac innervation: Experimental and clinical studies. Arch. Surg. 26:765–786, 1933.Google Scholar
  116. Willis, W. D., and Coggeshall, R. E. Sensory Mechanisms of the Spinal Cord, Plenum Press, New York, 1978, p. 485.Google Scholar
  117. Willis, W. D., Trevino, D. L., Coulter, J. D., and Maunz, R. D. Responses of primate spinothalamic tract neurons to natural stimulation of hindlimb. J. Neurophysiol. 37:358–372, 1974.PubMedGoogle Scholar
  118. Willis, W. D., Haber, L. H., and Martin, R. F. Inhibition of spinothalamic tract cells and interneurons by brainstem stimulation in the monkey. J. Neurophysiol. 40:968–981, 1977.PubMedGoogle Scholar
  119. Wolff, H. G., and Hardy, J. D. On the nature of pain. Physiol. Rev. 27:167–199, 1947.PubMedGoogle Scholar
  120. Zamir, N. and Segal, M. Hypertension-induced analgesia: Changes in pain sensitivity in experimental hypertensive rats. Brain Res. 160:170–173, 1979.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Robert D. Foreman
    • 1
  1. 1.Department of Physiology and Biophysics, College of MedicineUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations