Advertisement

Polymorphism of Wangiella dermatitidis

  • Philip A. Geis
  • Charles W. Jacobs

Abstract

Wangiella dermatitidis exhibits a polymorphism consisting of three well-defined morphologies, together with various forms characteristic of transitions among them (Figure 1). The organism may exist as moniliform or true hyphae, characterized by apical growth and production of blastoconidia. Alternatively, it may be found as unicellular budding yeasts, characterized by intermittent polar growth associated with bud formation and secondary isotropic (spherical) growth. Third, it may form enlarged, thick-walled cells, characterized by isotropic growth and, eventually, by the formation of internal septa. This third morphology, the multicellular form, resembles the sclerotic bodies produced by etiological agents of chromoblastomycosis (Rippon, 1982).

Keywords

Polarization Director Pore Plug Isotropic Growth Dematiaceous Fungus Glucan Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, A. E. M., and Pringle, F. R., 1984, Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae, J. Cell. Biol. 98:934–945.PubMedCrossRefGoogle Scholar
  2. Bartnicki-Garcia, S., Ruiz-Herrera, J., and Bracker, C. E., 1979, Chitosomes and chitin synthetase, in: Fungal Walls and Hyphal Growth (J. H. Burnett and A. P. J. Trinci, eds.), Cambridge University Press, Cambridge, England, pp. 149–168.Google Scholar
  3. Butterfield, W., and Jong, S. C., 1976, Effect of carbon source on conidiogenesis in Fonsecaea dermatitidis, agent of chromomycosis, Mycopathologia 58:59–62.PubMedCrossRefGoogle Scholar
  4. Byers, B., and Goetsch, L., 1974, Duplication of spindle plaques and integration of the yeast cell cycle, Cold Spring Harbor Symp. Quant. Biol 38:123–131.PubMedCrossRefGoogle Scholar
  5. Byers, B., and Goetsch, L., 1975, Behavior of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae, J. Bacteriol. 124:511–523.PubMedGoogle Scholar
  6. Calderone, R. A., 1976, Endogenous respiration and fatty acids of Phialophora dermatitidis, Mycologia 68:99–107.PubMedCrossRefGoogle Scholar
  7. Carrion, A. L., 1950, Yeast-like dematiaceous fungi infecting human skin, Arch. Dermatol. Syphilol. 61:966–1009.Google Scholar
  8. Cole, G. T., 1978, Conidiogenesis in the black yeasts, in: Proceedings of the Fourth International Conference on the Mycoses: The Black and White Yeasts, Scientific Publication No. 356, Pan American Health Organization, Washington, D.C., pp. 66–78.Google Scholar
  9. Cooper, C. R., Harris, J. L., Jacobs, C. W., and Szaniszlo, P. J., 1984, Effects of polyoxin AL on cellular development in Wangiella dermatitidis, Exp. Mycol. 8:349–363.CrossRefGoogle Scholar
  10. DeHoog, G. S., 1977, Rhinocladiella and allied genera, in: Studies in Mycology, Vol. 15, The Black Yeasts and Allied Hyphomycetes (G. W. DeHoog and E. J. Hermanides-Nijof, eds.), Centraalbureau voor Schimmelcultur, Baarn, The Netherlands, pp. 1–118.Google Scholar
  11. Duran, A., Bowers, B., and Cabib, E., 1975, Chitin synthetase zymogen is attached to the yeast plasma membrane, Proc. Natl. Acad. Sci. U.S.A. 72:3952–3955.PubMedCrossRefGoogle Scholar
  12. Endo, A., Kakiki, K., and Misato, T., 1970, Mechanisms of action of the antifungal agent polyoxin D, J. Bacteriol. 104:189–196.PubMedGoogle Scholar
  13. Farkas, V., 1979, Biosynthesis of cell walls of fungi, Microbiol. Rev. 43:117–144.PubMedGoogle Scholar
  14. Geis, P. A., 1981, Chemical composition of the yeast and sclerotic cell walls of Wangiella dermatitidis, Ph.D. dissertation, University of Texas, Austin, Texas, pp. 1–183.Google Scholar
  15. Geis, P. A., Wheeler, M. H., and Szaniszlo, P. J., 1984, Pentaketide metabolites of melanin synthesis in the dematiaceous fungus Wangiella dermatitidis, Arch. Microbiol. 137:324–328.PubMedCrossRefGoogle Scholar
  16. Grove, S. W., Oujezdsky, K. B., and Szaniszlo, P. J., 1973, Budding in the dimorphic fungus Phialophora dermatitidis, J. Bacteriol. 115:323–329.PubMedGoogle Scholar
  17. Hartwell, L. H., 1974, Saccharomyces cerevisiae cell cycle, Bacteriol. Rev. 38:164–198.PubMedGoogle Scholar
  18. Hironaga, M., Watanabe, S., Nishimura, K., and Miyaji, M., 1981, Annellated conidiogenous cells in Exophiala dermatitidis, agent of phaeohyphomycosis, Mycologia 73:1181–1183.CrossRefGoogle Scholar
  19. Holan, Z., Pokorny, R., Beran, K., Gemperle, A., Tuzar, Z., and Baldrian, J., 1981, The glucan-chitin complex in Saccharomyces cerevisiae. V. Precise location of chitin and glucan in bud scar and their physico-chemical characterization, Arch. Microbiol. 130:312–318.CrossRefGoogle Scholar
  20. Jacobs, C. W., 1983, Events associated with cellular development and differentiation in Wangiella dermatitidis, Ph.D. dissertation, University of Texas, Austin, Texas, pp. 1–178.Google Scholar
  21. Jacobs, C. W., and Szaniszlo, P. J., 1982, Microtubule function and its relation to cellular development and the yeast cell cycle in Wangiella dermatitidis, Arch. Microbiol. 133:155–161.PubMedCrossRefGoogle Scholar
  22. Jacobs, C. W., and Szaniszlo, P. J., 1985, Altered development in a temperature sensitive morphological mutant of Wangiella dermatitidis, Mycologia 77:142–148.CrossRefGoogle Scholar
  23. Jacobs, C. W., Roberts, R. L., and Szaniszlo, P. J., 1985, Reversal of multicellular form development in a conditional morphological mutant of the fungus Wangiella dermatitidis, J. Gen. Microbiol., in press.Google Scholar
  24. Jaffe, L. F., and Nuccitelli, R., 1977, Electrical controls of development, Annu. Rev. Biochem. 6:445–476.Google Scholar
  25. Johnston, G. C., Singer, R. A., and McFarlane, E. S., 1977, Growth and cell division during nitrogen starvation of the yeast Saccharomyces cerevisiae, J. Bacteriol. 132:723–730.PubMedGoogle Scholar
  26. Kang, M. S., Szaniszlo, P. J., and Cabib, E., 1984, Fungal β (1 → 3) glucan synthetases; stimulation by nucleotides, inhibition by papulocandin and cooperative effects, Fed. Proc. Abstr. ASBC/AAE Am. Meet. 84:1697.Google Scholar
  27. Katoh, Y., Kuninaka, A., Yoshino, H., Takatsuki, A., Yamasaki, M., and Tamura, G., 1978, Chemical composition of giant cells induced by tunicamycin and normal mycelium of Penicillium citrinum, Agric. Biol. Chem. 42:1833–1840.CrossRefGoogle Scholar
  28. Kilmartin, J., and Adams, A. E. M., 1984, Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces, J. Cell Biol. 98:922–933.PubMedCrossRefGoogle Scholar
  29. Kitamura, K., and Yamamoto, T., 1972, Purification and properties of an enzyme, zymolyase, which lyses viable yeast cells, Arch. Biochem. Biophys. 153:403–406.PubMedCrossRefGoogle Scholar
  30. Kuo, S. C., and Lampen, J. O., 1974, Tunicamycin—an inhibitor of yeast glycoprotein synthesis, Biochem. Biophys. Res. Commun. 58:287–295.PubMedCrossRefGoogle Scholar
  31. Maeda, H., and Ishida, N., 1967, Specificity of binding hexopyranosylpolysaccharides with fluorescent brightener, J. Biochem. 62:276–278.PubMedGoogle Scholar
  32. Marlowe, J. D., 1977, The development of the sclerotic cell in agents of chromoblastomycosis, an ultrastructural study, M. A. thesis, University of Texas, Austin, Texas, pp. 1–139.Google Scholar
  33. McGinnis, M. R., 1977, Wangiella, a new genus to accommodate Hormiscium dermatitidis, Mycotaxon 5:353–363.Google Scholar
  34. McGinnis, M. R., 1983, Chromomycosis and phaeohyphomyxosis: Concepts, diagnosis and mycology, J. Am. Acad. Dermatol. (St. Louis) 8:1–16.CrossRefGoogle Scholar
  35. Nishimura, K., and Miyaji, M., 1983, Defence mechanisms of mice against Exophiala dermatitidis infection, Mycologia 81:9–21.Google Scholar
  36. Oujezdsky, K. B., and Szaniszlo, P. J., 1974, Conidial ontogeny in Phialophora dermatitidis, Mycologia 66:537–542.PubMedCrossRefGoogle Scholar
  37. Oujezdsky, K. B., Grove, S. N., and Szaniszlo, P. J., 1973, Morphological and structural changes during the yeast-to-mold conversion of Phialophora dermatitidis, Mycologia 66:537–542.CrossRefGoogle Scholar
  38. Pringle, J. R., and Hartwell, L. H., 1981, The Saccharomyces cerevisiae cell cycle, in: The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance (J. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Monographs, Cold Spring Harbor, New York, pp. 97–142.Google Scholar
  39. Reiss, N. R., and Mok, W. Y., 1979, Wangiella dermatitidis isolated from bats in Manaus, Brazil, Sabouraudia 17:213–218.PubMedCrossRefGoogle Scholar
  40. Rippon, J. W., 1982, Medical Mycology: The Pathogenic Fungi and the Pathogenic Actinomycetes, W. B. Saunders, Philadelphia, pp. 1–842.Google Scholar
  41. Roberts, R. L., 1979, Characterization of temperature-sensitive multicellular mutants of Wangiella dermatitidis, Ph.D. dissertation, University of Texas, Austin, Texas, pp. 1–167.Google Scholar
  42. Roberts, R. L., and Szaniszlo, P. J., 1978, Temperature-sensitive multicellular mutants of Wangiella dermatitidis, J. Bacteriol. 135:622–632.PubMedGoogle Scholar
  43. Roberts, R. L., and Szaniszlo, P. J., 1980, Yeast-phase cell cycle of the polymorphic fungus Wangiella dermatitidis, J. Bacteriol. 144:721–731.PubMedGoogle Scholar
  44. Roberts, R. L., Lo, R. J., and Szaniszlo, P. J., 1979, Nuclear division in temperature-sensitive multicellular mutants of Wangiella dermatitidis, J. Bacteriol 137:1456–1458.PubMedGoogle Scholar
  45. Roberts, R. L., Lo, R. J., and Szaniszlo, P. J., 1980, Induction of synchronous growth in the yeast phase of Wangiella dermatitidis, J. Bacteriol. 141:981–984.PubMedGoogle Scholar
  46. Roberts, R. L., Bowers, B., Slater, M. L., and Cabib, E., 1983, Chitin synthesis in cell division cycle mutants of Saccharomyces cerevisiae, Mol. Cell. Biol. 3:922–930.PubMedGoogle Scholar
  47. Schafer, R. C., Cooper, C. R., and Szaniszlo, P. J., 1984, Complementation of two multicellular genes from Wangiella dermatitidis by spheroplast fusion, Abstr. Annu. Meet. Am. Soc. Microbiol., 1984, p. 293.Google Scholar
  48. Silva, M., 1957, The parasitic phase of the fungi of chromoblastomycosis: Development of the sclerotic cell in vitro and in vivo, Mycologia 49:318–331.CrossRefGoogle Scholar
  49. Sloat, B. F., and Pringle, J. R., 1978, A mutant of yeast defective in cellular morphogenesis, Science 200:1171–1173.PubMedCrossRefGoogle Scholar
  50. Sloat, B. F., Adams, A., and Pringle, J. R., 1981, Roles of the CDC24 gene product in cellular morphogenesis during the Saccharomyces cerevisiae cell cycle, J. Cell Biol. 89:39–40.CrossRefGoogle Scholar
  51. Stephens, R. E., and Edds, K. T., 1976, Microtubules: Structure, chemistry and function, Physioi Rev. 56:709–776.Google Scholar
  52. Szaniszlo, P. J., Hsieh, P. H., and Marlowe, J. D., 1976, Induction and ultrastructure of the multicellular (sclerotic) morphology in Phialophora dermatitidis, Mycologia 68:117–130.PubMedCrossRefGoogle Scholar
  53. Szaniszlo, P. J., Geis, P. A., Jacobs, C. W., Cooper, C. R., and Harris, J. L., 1983, Cell wall changes associated with yeast-to-multicellular form conversion in Wangiella dermatitidis, in: Microbiology, Vol. 83 (D. Schlessinger, ed.), American Society of Microbiology, Washington, D.C., pp. 239–244.Google Scholar
  54. Szaniszlo, P. J., Kang, M. S., and Cabib, E., 1985, Stimulation of β(1 → 3)glucan synthetase of various fungi by nucleoside triphosphates: A generalized regulatory mechanism for cell wall biosynthesis, J. Bacteriol. 161:1188–1194.PubMedGoogle Scholar
  55. Tkacz, J. S., and Lampen, J. O., 1975, Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf liver microsomes, Biochem. Biophys. Res. Commun. 65:248–257.PubMedCrossRefGoogle Scholar
  56. Wang, J.-Y., 1982, Effects of tunicamycin and polyoxin AL on morphogenesis and viability of Wangiella dermatitidis, M.A. thesis, University of Texas, Austin, pp. 1–104.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Philip A. Geis
    • 1
  • Charles W. Jacobs
    • 2
  1. 1.Sharon Woods Technical CenterProcter and Gamble CompanyCincinnatiUSA
  2. 2.Division of Biological SciencesUniversity of MichiganAnn ArborUSA

Personalised recommendations