Advertisement

Candida albicans

  • David R. Soll

Abstract

The dimorphic yeast Candida albicans is capable of growing in culture as an ellipsoidal bud or as an elongate hypha. The growth phenotype depends on environmental conditions and the growth history of the cells (Evans et al., 1974, 1975; Chaffin and Sogin, 1976; Shepherd and Sullivan, 1976; Soll and Bedell, 1978; Mitchell and Soll, 1979a; Odds, 1979; Bell and Chaffin, 1980; Buffo et al., 1984; Soll and Herman, 1983). Although most noted for genital infections, C. albicans can invade a variety of tissues and is one of the most pervasive fungal pathogens in man (Odds, 1979). It is a commensal inhabitant of the human body, increasing in concentration and invading tissue usually in response to changes in the physiology of the host. Although both growth forms are found in infected tissue (Mackenzie, 1964; Odds, 1979), it seems likely that the elongating hypha penetrates tissue, leaving in its path lateral colonies of budding cells that in turn give rise to new penetrating hyphae.

Keywords

Candida Albicans Growth Form Germ Tube Mycelium Formation Spindle Pole Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J., and Soll, D. R., 1984, The effects of zinc on stationary phase phenotype and macromolecular synthesis accompanying outgrowth of Candida albicans, Infect. Immun. 46:13–21.PubMedGoogle Scholar
  2. Auger, P., and Joly, J., 1977, Factors influencing germ tube production in Candida albicans, Mycopathologia 61:183–186.PubMedGoogle Scholar
  3. Barlow, A. J. E., and Aldersley, T., 1974, Factors present in serum and seminal plasma which promote germ-tube formation and mycelial growth of Candida albicans, J. Gen. Microbiol. 82:261–272.PubMedGoogle Scholar
  4. Bedell, G., and Soll, D. R., 1979, The effects of low concentration of zinc on the growth and dimorphism of Candida albicans: Evidence for zinc resistant and zinc sensitive pathways for mycelium formation, Infect. Immun. 26:348–354.PubMedGoogle Scholar
  5. Bedell, G., Werth, A., and Soll, D. R., 1980, The regulation of nuclear migration and division during synchronous bud formation in released stationary phase cultures of the yeast Candida albicans, Exp. Cell Res. 127:103–113.PubMedGoogle Scholar
  6. Bell, G., and Chaffin, W. L., 1980, Nutrient-limited yeast growth in Candida albicans: Effect on yeast mycelial transition, Can. J. Microbiol. 26:102–105.PubMedGoogle Scholar
  7. Bhattacharya, A., and Datta, A., 1977, Effect of cAMP on RNA and protein synthesis in Candida albicans, Biochem. Biophys. Res. Commun. 7:1438–1444.Google Scholar
  8. Biswas, M., Singh, B., and Datta, A., 1979, Induction of N-acetylglucosamine catabolic pathway in yeast, Biochim. Biophys. Acta 585:535–542.PubMedGoogle Scholar
  9. Braun, P. C., and Calderone, R. A., 1978, Chitin synthesis in Candida albicans: Comparison of yeast and hyphal forms, J. Bacteriol. 135:1472–1477.Google Scholar
  10. Brown, L. A., and Chaffin, W. L., 1981, Differential expression of cytoplasmic proteins during yeast bud and germ tube formation in Candida albicans, Can. J. Microbiol. 27:580–585.PubMedGoogle Scholar
  11. Brummel, M., and Soll, D. R., 1982, The temporal regulation of protein synthesis during synchronous bud or mycelium formation in the dimorphic yeast Candida albicans, Dev. Biol. 89:211–224.PubMedGoogle Scholar
  12. Buffo, J., Herman, M., and Soll, D. R., 1984, A characterization of pH-regulated dimorphism in Candida albicans, Mycopathologia 85:21–30.PubMedGoogle Scholar
  13. Byers, B., 1981, Cytology of the yeast life cycle, in: The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance (D. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 59–96.Google Scholar
  14. Byers, B., and Goetsch, L., 1976, A highly ordered ring of membrane-associated filaments in budding yeast, J. Cell Biol. 69:717–721.PubMedGoogle Scholar
  15. Cabib, E., 1975, Molecular aspects of yeast morphogenesis, Annu. Rev. Microbiol. 29:191–214.PubMedGoogle Scholar
  16. Chaffin, W. L., and Sogin, S. L., 1976, Germ tube formation from zonal rotor fractions of Candida albicans, J. Bacteriol. 126:771–776.PubMedGoogle Scholar
  17. Chaffin, W. L., and Wheeler, D. E., 1981, Morphological commitment in Candida albicans, Can. J. Microbiol. 27:131–137.PubMedGoogle Scholar
  18. Chattaway, F. W., and O’reilly, J., 1976, Induction of the mycelial form of Candida albicans by hydrolysates of peptides and seminal plasma, J. Gen. Microbiol. 96:317–322.PubMedGoogle Scholar
  19. Chattaway, F. W., Holmes, M. R., and Barlow, A. J. E., 1968, Cell wall composition of the mycelial and blastospore forms of Candida albicans, J. Gen. Microbiol. 51:367–376.PubMedGoogle Scholar
  20. Chattaway, F. W., Wheeler, P. R., and O’reilly, J., 1981, Involvement of adenosine 3′:5′cyclic monophosphate in the germination of blastospores of Candida albicans, J. Gen. Microbiol. 123:233–240.PubMedGoogle Scholar
  21. Chiew, Y. Y., Shepherd, M. G., and Sullivan, P. A., 1980, Regulation of chitin synthesis during germ tube formation in Candida albicans, Arch Microbiol. 125:97–104.PubMedGoogle Scholar
  22. Chung, S., Landfear, S. M., Blumberg, D. D., Cohen, N. S., and Lodish, H. F., 1981, Synthesis and stability of developmentally regulated Dictyostelium mRNA’s are affected by cell-cell contact and cAMP, Cell 24:785–797.PubMedGoogle Scholar
  23. Dabrowa, N., Howard, D. H., Landau, J. W., and Shcchter, Y., 1970, Synthesis of nucleic acid and proteins in the dimorphic forms of Candida albicans, Sabouraudia 8:163–169.PubMedGoogle Scholar
  24. Dabrowa, N., Taper, S. S., and Howard, D. H., 1976, Germination of Candida albicans induced by proline, Infect. Immun. 13:830–835.PubMedGoogle Scholar
  25. DeFever, K., Whelan, W. L., Beneke, E. S., Rogers, A. L., Vaselenak, J., and Soll, D. R., 1982, Resistance to 5-fluorocytosine in Candida albicans: The frequency of partially resistant strains among clinical isolates, Antimicrob. Agents Chemother. 22:810–815.PubMedGoogle Scholar
  26. Duran, W., Cabib, E., and Bowers, B., 1979, Chitin synthetase distribution on the yeast plasma membrane, Science 203:303–365.Google Scholar
  27. Evans, E. G., Odds, F. C., Richardson, M. D., and Holland, R. T., 1974, Effect of growth medium on filament production in Candida albicans, Sabouraudia 12:112–119.PubMedGoogle Scholar
  28. Evans, E. G., Odds, F. C., and Holland, K. T., 1975, Optimum conditions for initiation of filamentation in Candida albicans, Can. J. Microbiol. 21:338–342.PubMedGoogle Scholar
  29. Finney, R., Langtimm, C., and Soll, D. R., 1985, The programs of protein synthesis accompanying the establishment of alternative phenotypes in Candida albicans, Mycopathologia (in press).Google Scholar
  30. Gow, N. A., Gooday, G. W., Newsam, R. M., and Gull, K., 1980, Ultrastructure of the septum in Candida albicans, Curr. Microbiol. 4:357–359.Google Scholar
  31. Greenfield, R. A., and Jones, J. M., 1981, Purification and characterization of a major cytoplasmic antigen of Candida albicans, Infect Immun. 34:469–477.PubMedGoogle Scholar
  32. Hazen, R. C., and Cutler, J. E., 1979, Autoregulation of germ tube formation by Candida albicans, Infect. Immun. 24:661–666.PubMedGoogle Scholar
  33. Heinemann, H. S., Yunis, E. J., Siemienski, J., and Braude, A. I., 1961, Chlamydospores and dimorphism in Candida albicans endocarditis, Arch. Intern. Med. 108:570–577.Google Scholar
  34. Herman, M., and Soll, D. R., 1984, A comparison of volume growth during bud and mycelium formation in Candida albicans: A single cell analysis, J.Gen. Microbiol. 130:2219–2228.PubMedGoogle Scholar
  35. Horisberger, M., and Vonlanthen, M., 1977, Location of mannan and chitin on thin sections of budding yeasts with gold markers, Arch. Microbiol. 115:1–7.PubMedGoogle Scholar
  36. Hrrnova, M., and Drobnica, L., 1981, Induction of mycelial type of development in Candida albicans by low glucose concentration, Mycopathologia 76:83–96.Google Scholar
  37. Hubbard, M., Bradley, M., Sullivan, P., Shepherd, M., and Forrester, I., 1982, Evidence for the recurrence of calmodulin in the yeasts Candida albicans and Saccharomyces cerevisiae, FEBS Lett. 137:85–88.PubMedGoogle Scholar
  38. Johnston, G. C., and Singer, R. A., 1978, RNA synthesis and control of cell division in the yeast Saccharomyces cerevisiae, Cell 14:951–958.PubMedGoogle Scholar
  39. Kakar, S. N., and Magee, P. T., 1982, Genetic analysis of Candida albicans: Identification of different isoleucine-valine, methionine, and arginine alleles by complementation, J. Bacteriol. 151:1247–1252.PubMedGoogle Scholar
  40. Kott, E. J., Olson, U. L., Rolervic, L. J., and McClary, D. O., 1976, An alternate respiratory pathway in Candida albicans, Antonie van Leeuwenhoek J. Microbiol. Serol. 42:33–48.Google Scholar
  41. Land, G. A., McDonald, W. C., Stjernholm, R. L., and Friedman, L., 1975, Factors affecting filamentation in Candida albicans: Changes in respiratory activity of Candida albicans during filamentation, Infect. Immun. 12:119–127.PubMedGoogle Scholar
  42. Lauer, G. O., Roberts, T. M., and Klotz, L. C., 1977, Determination of the nuclear DNA content of Saccharomyces cerevisiae and implications of the organization of DNA in yeast chromosomes, J. Mol. Biol 114:507–526.PubMedGoogle Scholar
  43. Lee, K. L., Buckley, H. R., and Campbell, H. R., 1975, An amino acid liquid synthetic medium for development of mycelial and yeast forms of Candida albicans, Sabouraudia 13:148–153.PubMedGoogle Scholar
  44. Lingappa, B. T., Prasad, M., and Lingappa, Y., 1969, Phenethyl alcohol and tryptophol: Autoantibodies produced by the fungus Candida albicans, Science 163:192–194.PubMedGoogle Scholar
  45. Mackenzie, D. W., 1964, Morphogenesis of Candida albicans in vivo, Sabouraudia 3:225–232.PubMedGoogle Scholar
  46. Manning, M., and Mitchell, T. G., 1980a, Strain variation and morphogenesis of yeast-and mycelial-phase Candida albicans in low sulfate, synthetic medium, J. Bacteriol. 142:714–719.PubMedGoogle Scholar
  47. Manning, M., and Mitchell, T. G., 1980b, Morphogenesis of Candida albicans and cytoplasmic proteins associated with differences in morphology, strain, or temperature, J. Bacteriol. 144:258–273.PubMedGoogle Scholar
  48. Manning, M., and Mitchell, T. G., 1980c, Analysis of cytoplasmic antigens of the yeast and mycelial phases of Candida albicans by two-dimensional electrophoresis, Infect. Immun. 30:484–495.PubMedGoogle Scholar
  49. Mardon, D. W., Balish, E., and Phillips, A. W., 1969, Control of dimorphism in a biochemical variant of Candida albicans, J. Bacteriol. 100:701–707.PubMedGoogle Scholar
  50. Mardon, D. W., Hurst, S. K., and Balish, E., 1971, Germ tube production by Candida albicans in minimal liquid culture media, Can. J. Microbiol. 17:851–856.PubMedGoogle Scholar
  51. Matile, P., Moor, H., and Robinow, C. F., 1969, Yeast cytology, in: The Yeasts, Vol. I (A. H. Rose and J. S. Harrison, eds.), Academic Press, New York, pp. 219–302.Google Scholar
  52. Mattia, E., and Cassone, A., 1979, Inductibility of germ tube formation in Candida albicans at different phases of yeast growth, J. Gen. Microbiol. 113:439–442.PubMedGoogle Scholar
  53. Miller, S. E., and Finnerty, W. R., 1979, Age-related physiological studies comparing Candida albicans chlamydospores to yeast, Can. J. Microbiol. 25:765–772.PubMedGoogle Scholar
  54. Miller, S. E., Spurlock, B. O., and Michaels, G. E., 1974, Electron microscopy of young Candida albicans chlamydospores, J. Bacteriol. 119:992–999.PubMedGoogle Scholar
  55. Mitchell, L., and Soll, D. R., 1979a, Commitment to germ tube or bud formation during release from stationary phase in Candida albicans, Exp. Cell Res. 120:167–179.PubMedGoogle Scholar
  56. Mitchell, L., and Soll, D. R., 1979b, Septation during synchronous mycelium and bud formation in released stationary phase cultures of Candida albicans, Exp. Mycol. 3:298–309.Google Scholar
  57. Nickerson, W. J., and Chung, C. W., 1954, Genetic block in the cellular division mechanism of a morphological mutant of a yeast, Am. J. Bot. 41:114–120.Google Scholar
  58. Nickerson, W. J., and Mankowski, Z., 1953, Role of nutrition in the maintenance of the yeast-shape in Candida, Am. J. Bot. 40:584–592.Google Scholar
  59. Nickerson, W. J., and Van Rij, N. J., 1949, The effect of sulphhydryl compounds, penicillin, and cobalt on the cell division mechanism of yeast, Biochim. Biophys. Acta 3:461–475.Google Scholar
  60. Niimi, M., Niimi, K., Tokunagu, J., and Nakayama, H., 1980, Changes in cyclic nucleotide levels and dimorphic transition in Candida albicans, J. Bacteriol. 142:1010–1014.PubMedGoogle Scholar
  61. Odds, F. C., 1979, Candida and Candidosis, University Park Press, Baltimore.Google Scholar
  62. Ogletree, F. F., Abdilal, A. T., and Ahearn, D. G., 1978, Germ-tube formation by atypical strains of Candida albicans, Antonie van Leeuwenhoek J. Microbiol. Serol. 44:15–24.Google Scholar
  63. Olaiya, A. F., and Sogin, S. J., 1979, Ploidy determination of Candida albicans, J. Bacteriol. 140:1043–1049.PubMedGoogle Scholar
  64. Olaiya, A. F., Steed, J. F., and Sogin, S. J., 1980, Deoxyribunucleic acid-deficient strains of Candida albicans, J. Bacteriol. 141:1284–1290.PubMedGoogle Scholar
  65. Persi, M. A., and Burnham, J. C., 1981, Use of tunnic acid as a fixative-mordant to improve the ultrastructural appearance of Candida albicans blastospores, Sabouraudia 19:1–8.PubMedGoogle Scholar
  66. Pesti, M., and Ferenczy, L., 1982, Protoplast fusion hybrids of Candida albicans sterol mutants different in nystatin resistance, J. Gen. Microbiol. 128:123–128.PubMedGoogle Scholar
  67. Poulter, R., Jeffery, K., Hubbard, M. J., Shepperd, M. G., and Sullivan, P. A., 1981, Parasexual genetic analysis of Candida albicans by spheroplast fusion, J. Bacteriol. 146:833–840.PubMedGoogle Scholar
  68. Pringle, J. R., and Hartwell, L. M., 1981, The Saccharomyces cerevisiae cell cycle, in: The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance (J. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 97–142.Google Scholar
  69. Riggsby, W. S., Torres-Bauza, L. J., Wills, J. W., and Townes, T. M., 1982, DNA content, kinetic complexity, and the ploidy question in Candida albicans, Mol. Cell. Biol. 2:853–862.PubMedGoogle Scholar
  70. Rogers, T. J., and Balish, E., 1980, Immunity to Candida albicans, Microbiol. Rev. 44:660–682.PubMedGoogle Scholar
  71. Ross, J. F., and Orlowski, M., 1982, Regulation of ribosome function in the fungus Mucor: Growth rate vis-à-vis dimorphism, FEMS Microbiol. Lett. 13:325–328.Google Scholar
  72. Saltarelli, C. G., 1973, Growth stimulation and inhibition of Candida albicans by metabolic by-products, Mycopathol. Mycol. Appl. 51:53–63.PubMedGoogle Scholar
  73. Sarachek, A., and Rhoads, D. P., 1981, Production of heterokaryons of Candida albicans by protoplast fusions: Effects of differences in proportions and regenerative abilities of fusion partners, Curr. Genet. 4:221–222.Google Scholar
  74. Scherwitz, C., Martin, R., and Ueberberg, H., 1978, Ultrastructural investigations of the formation of Candida albicans germ tubes and septa, Sabouraudia 16:115–124.PubMedGoogle Scholar
  75. Shannon, J. L., 1981, Scanning and transmission electron microscopy of Candida albicans chlamydospores, J. Gen. Microbiol. 125:199–203.PubMedGoogle Scholar
  76. Shannon, J. L., and Rothman, A. H., 1971, Transverse septum formation in budding cells of the yeast-like fungus Candida albicans, J. Bacteriol. 106:1026–1028.PubMedGoogle Scholar
  77. Shepherd, M. G., and Sullivan, P. A., 1976, The production and growth characteristics of yeast and mycelial forms of Candida albicans in continuous culture, J. Gen. Microbiol. 93:361–370.PubMedGoogle Scholar
  78. Shepherd, M. G., Moi Chin, C., and Sullivan, P. A., 1978, The alternate respiratory pathway of Candida albicans, Arch. Microbiol. 116:61–67.PubMedGoogle Scholar
  79. Shepherd, M. G., Yin, C. Y., Ram, S. P., and Sullivan, P. A., 1980, Germ tube induction in Candida albicans, Can. J. Microbiol. 26:21–26.PubMedGoogle Scholar
  80. Simonetti, N., Strippoli, V., and Cassone, A., 1974, Yeast-mycelial conversion induced by N-acetyl-D-glucosamine in Candida albicans, Nature (London) 250:344–346.Google Scholar
  81. Singh, B., and Datta, A., 1978, Glucose repression of the inducible catabolic pathway for N-acetylglucosamine in yeast, Biochem. Biophys. Res. Commun. 84:58–64.PubMedGoogle Scholar
  82. Singh, B., and Datta, A., 1979a, Induction of N-acetylglucosamine catabolic pathway in spheroplasts of Candida albicans, Biochem. J. 178:427–431.PubMedGoogle Scholar
  83. Singh, B., and Datta, A., 1979b, Regulation of N-acetylglucosamine uptake in yeast, Biochim. Biophys. Acta 55:248–258.Google Scholar
  84. Singh, B., Biswas, M., and Datta, A., 1979, Inducible N-acetylglucosamine binding protein in yeasts, J. Bacteriol. 144:1–6.Google Scholar
  85. Soll, D. R., 1985, The role of zinc in Candida dimorphism, in: Current Topics in Medical Mycology, Vol. 1 (M. R. McGinnis, ed.), Springer-Verlag, New York (in press).Google Scholar
  86. Soll, D. R., 1984, The cell cycle and commitment to alternate cell fates in Candida albicans, in: The Microbial Cell Cycle (P. Nurse and E. Streiblova, eds.), CRC Press, Boca Raton, Florida, pp. 143–162.Google Scholar
  87. Soll, D. R., and Bedell, G. W., 1978, Bud formation and the inducibility of pseudo-mycelium outgrowth during release from stationary phase in Candida albicans, J. Gen. Microbiol 108:173–180.Google Scholar
  88. Soll, D. R., and Herman, M., 1983, Growth and inducibility of mycelium formation in Candida albicans: A single cell analysis using a perfusion chamber, J. Gen. Microbiol. 129:2809–2824.PubMedGoogle Scholar
  89. Soll, D. R., and Mitchell, L., 1983, Filament ring formation in the dimorphic yeast Candida albicans, J. Cell Biol. 96:486–493.PubMedGoogle Scholar
  90. Soll, D. R., and Sonneborn, D. R., 1971, Zoospore germination in Blastocladiella emersonii: Cell differentiation without protein synthesis?, Proc. Natl. Acad. Sci. U.S.A. 68:459–463.PubMedGoogle Scholar
  91. Soll, D. R., Stasi, M., and Bedell, G., 1978, The regulation of nuclear migration and division during pseudo-mycelium outgrowth in the dimorphic yeast Candida albicans, Exp. Cell Res. 116:207–215.PubMedGoogle Scholar
  92. Soll, D. R., Bedell, G. W., and Brummel, M., 1981a, Zinc and the regulation of growth and phenotype in the infectious yeast Candida albicans, Infect. Immun. 32:1139–1147.PubMedGoogle Scholar
  93. Soll, D. R., Bedell, G. W., Thiel, J., and Brummel, M., 1981b, The dependency of nuclear division on volume in the dimorphic yeast Candida albicans, Exp. Cell Res. 133:55–62.PubMedGoogle Scholar
  94. Speller, C. D., 1980, Antifungal Chemotherapy, John Wiley, New York.Google Scholar
  95. Sullivan, P. A., and Shepherd, M. G., 1982, Gratuitous induction by N-acetyl-glucosamine of germ-tube formation and enzymes for iV-acetylglucosamine utilization in Candida albicans, J. Bacteriol. 151:1118–1122.PubMedGoogle Scholar
  96. Syverson, R. E., Buckely, H. R., and Campbell, C. C., 1975, Cytoplasmic antigens unique to the mycelial or yeast phase of Candida albicans, Infect. Immun. 12:1183–1188.Google Scholar
  97. Szawathowski, M., and Hamilton-Miller, J. M., 1975, Anaerobic growth and sensitivity of Candida albicans, Microbios Lett. 5:61–66.Google Scholar
  98. Taschdjian, L. L., Burchall, J. J., and Kozinn, P. J., 1960, Rapid identification of Candida albicans by filamentation on serum and serum substitutes, Am. J. Dis. Child. 99:212–215.Google Scholar
  99. Vaughan, V. J., and Weinberg, E. D., 1978, Candida albicans dimorphism and virulence: Role of copper, Mycopathologia 64:39–42.Google Scholar
  100. Wain, W. H., Brayton, A. R., and Cawson, R. A., 1976a, Variations in the response to N-acetyl-d-glucosamine by isolates of Candida albicans, Mycopathologia 58:27–29.PubMedGoogle Scholar
  101. Wain, W. H., Price, M. F., Brayton, A. R., and Cawson, R. A., 1976b, Macromolecular synthesis during the cell cycles of yeast and hyphal phases of Candida albicans, J. Gen. Microbiol. 97:211–217.PubMedGoogle Scholar
  102. Whelan, W. L., and Magee, P. T., 1981, Natural heterozygosity in Candida albicans, J. Bacteriol. 145:896–903.PubMedGoogle Scholar
  103. Whelan, W. L., and Soll, D. R., 1982, Mitotic recombination in Candida albicans: Recessive lethal alleles linked to a gene required for methionine biosynthesis, Mol. Gen. Genet. 187:477–485.PubMedGoogle Scholar
  104. Whelan, W. L., Partridge, R. M., and Magee, P. T., 1980, Heterozygosity and segregation in Candida albicans, Mol. Gen. Genet. 180:107–113.PubMedGoogle Scholar
  105. Whelan, W. L., Beneke, E. S., Rogers, A. L., and Soll, D. R., 1981, Segregation of 5-fluorocytosine-resistant variants by Candida albicans, Antimicrob. Agents Chemother. 19:1078–1081.PubMedGoogle Scholar
  106. Yamaguchi, H., 1975, Control of dimorphism in Candida albicans by zinc: Effect on cell morphology and composition, J. Gen. Microbiol. 86:370–372.PubMedGoogle Scholar
  107. Yamaguchi, H., Kanda, Y., and Oswoni, M., 1974, Dimorphism in Candida albicans. II. Comparison of fine structure of yeast like and filamentous phase growth, J. Gen. Appl. Microbiol. 20:101–110.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • David R. Soll
    • 1
  1. 1.Department of BiologyUniversity of IowaIowa CityUSA

Personalised recommendations