Determinations of Functional Heterogeneity in Proteoliposomes

  • Duncan H. Bell
Part of the NATO ASI Series book series (NSSA, volume 91)


In this chapter the role of membranes and membrane proteins in the organization and maintenance of biological function are discussed. Reconstitution experiments in the study of membrane proteins are considered along with a discussion of physical and functional heterogeneity as it pertains to these proteoliposome preparations. In this context, a novel dual-entrapped-probe method for the analysis of this heterogeneity is detailed. Specific reference is made to the application of the dual-probe approach to membrane proteins which generate pH gradients. The chapter concludes with a brief discussion of further applications of the technique and its limitations.


Phospholipid Vesicle Ideal Probe Functional Heterogeneity United Kingdom Introduction Halobacterium Halobium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bashford, C. L., and Smith, J. C., 1979, The use of optical probes to monitor membrane potential, Methods Enzymol., 55: 569.PubMedCrossRefGoogle Scholar
  2. Bell, D. H., Patterson, L. K., and Gould, J. M., Transmembrane pH gradients and functional heterogeneity in reconstituted vesicle systems, Biochim. Biophys. Acta, 725:368.Google Scholar
  3. Biegel, C. M., and Gould, J. M., 1981, Kinetics of hydrogen ion diffusion across phospholipid vesicle membranes, Biochemistry, 20: 3474.PubMedCrossRefGoogle Scholar
  4. Casey, R. P., O’Shea, P. S., Chappell, J. B., and Azzi, A., 1984, A quantitative characterisation of H+ translocation by cytochrome c oxidase vesicles, Biochim. Biophys. Acta, 765: 30.PubMedCrossRefGoogle Scholar
  5. Clement, N. R., and Gould, J. M., 1981, Pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles, Biochemistry, 20: 1534.PubMedCrossRefGoogle Scholar
  6. Darszon, A., Vandenberg, C. A., Schonfeld, M., Ellisman, M. H., Spitzer, N. C., and Montal, M., 1980, Reassembly of protein-lipid complexes into large bilayer vesicles: Perspectives for membrane reconstitution, Proc. Natl. Acad. Sci. U.S.A., 77: 23.CrossRefGoogle Scholar
  7. Drachev, L. A., Frolov, V. N., Kaulen, A. D., Liberman, E. A., Obstroumov, S. A., Plakunova, V. G., Semenov, A. Yu., and Skulachev, V. P., Reconstitution of biological molecular generators of electric current. BacteriorhodopsinJ. Biol. Chem., 251:7059.Google Scholar
  8. Gould, J. M., and Bell, D. H., 1981, Hydrogen ion permeability in reconstituted vesicle systems, in: “Energy Coupling in Photosynthesis,” Selman, B. R. and Selman-Reimer, S. eds., Elsevier, New York.Google Scholar
  9. Hargreaves, W. R., and Deamer, D. W., 1978, Origin and early evolution of bilayer membranes, in: “Light Transducing Membranes,” D. W. Deamer ed., ACddemic Press, New York.Google Scholar
  10. Jain, K. M., and Wagner, R. C., 1980, “Introduction to Biological Membranes,” Wiley and Sons, New York.Google Scholar
  11. Kagawa, Y., and Racker, E., 1971, Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXV. Reconstitution of vesicles catalyzing 32Pi-adenosine triphosphate exchange, J. Biol. Chem., 246: 5477.Google Scholar
  12. Karpen, J. W., Sachs, A. B., Cash, D. J., Pasquale, E. B., and Hess, G. P., 1983, Direct spectrophotometric detection of cation flux in membrane vesicles: Stopped-flow measurements of acetylcholinereceptor-mediated ion flux, Anal. Biochem., 135: 83.PubMedCrossRefGoogle Scholar
  13. Mehlhorn, R. J., and Probst, I., 1982, Light-induced pH gradients measured with spin-labeled amine and carboxylic acid probes: Application to Halobacterium halobium cell envelope vesicles, Methods Enzymol., 88: 334.CrossRefGoogle Scholar
  14. Nicholls, P., Hildebrandt, V., and Wrigglesworth, J. M., 1980, Orientation and reactivity of cytochrome aa3 heure groups in proteoliposomes, Arch. Biochem. Biophys., 204: 533.PubMedCrossRefGoogle Scholar
  15. Oesterhelt, D., and Stoeckenius, W., 1973, Functions of a new photoreceptor membrane, Proc. Natl. Acad. Sci. U.S.A., 70: 2853.PubMedCrossRefGoogle Scholar
  16. Olson, F., Hunt, C. A., Szoka, F. C., Vail, W. J., and Papahadjopoulos, D., 1979, Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes, Biochim. Biophys. Acta, 557: 9PubMedCrossRefGoogle Scholar
  17. Racker, E., 1979, Reconstitution of membrane proteins, Methods Enzymol., 55: 699.PubMedCrossRefGoogle Scholar
  18. Ramos, S., Schuldiner, S., and Kaback, H. R., 1979, The use of flow dialysis for determinations of ApH and active transport, Methods Enzymol., 55: 680.PubMedCrossRefGoogle Scholar
  19. Rigaud, J.L., Bluzat, A., and Buschlen, S., 1983, Incorporation of bacteriorhodopsin into large unilamellar liposomes by reverse phase evaporation, Biochem. Biophys. Res. Comm., 111: 373.PubMedCrossRefGoogle Scholar
  20. Robinson, N. C., and Capaldi, R. A., 1977, Interaction of detergents with cytochrome c oxidase. Biochemistry, 16: 375.PubMedCrossRefGoogle Scholar
  21. Rottenberg, H., 1979, The measurement of membrane potential and ApH in cells, organelles, and vesicles, Methods Enzymol., 55: 547.PubMedCrossRefGoogle Scholar
  22. Scarpa, A., 1979, Measurements of cation transport with metallo-chromic indicators, Methods Enzymol., 56: 301.PubMedCrossRefGoogle Scholar
  23. Szoka, F., and Papahadjopoulos, D., 1981, Liposomes, preparation and characterization, in: “Liposomes: From Physical Structure to Therapeutic Applications,” C. G. Knight, Ed., Elsevier New York.Google Scholar
  24. Trandinh, S., Prigent, Y., Lacapere, J.-J., and Gary-Bobo, C., An NMR method for the study of proton transport across phospholipid vesicles, Biochem. Biophys. Res. Comm., 99:429.Google Scholar
  25. Van Dijck, P. W. M., Nicolay, K., Leunissen-Bijvelt, J., Van Dam, K., and Kaptein, R., 1981, 31-P-NMR and freeze-fracture electron microscopic studies on reconstituted bacteriorhodopsin vesicles, Eur. J. Biochem., 117: 639.PubMedGoogle Scholar
  26. Watts, A., Marsh, D., and Knowles, P.F., 1978, Characterization of dimyristoylphosphatidylcholine vesicles and their dimensional changes through the phase transition: Molecular control of membrane morphology, Biochemistry, 17: 179.Google Scholar
  27. Wrigglesworth, J. M., and Nicholls, P., 1979, Turnover and vectorial properties of cytochrome c oxidase in reconstituted vesicles, Biochim. Biophys. Acta, 547: 36.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Duncan H. Bell
    • 1
  1. 1.Botany DepartmentUniversity of GlasgowGlasgowUK

Personalised recommendations