Membrane-Oscillator Hypothesis of Metabolic Control in Photoperiodic Time Measurement and the Temporal Organization of Development and Behaviour in Plants

  • E. Wagner
  • M. Bonzon
  • H. Greppin
Part of the NATO ASI Series book series (NSSA, volume 91)


As a working hypothesis we proposed that the oscillatory feedback system of cellular energy metabolism should be the basis for the endogenous timing of growth, development and behaviour in eukaryotic systems. The interaction of environmental signals with an endogenous physiological rhythm or clock was assumed to occur at membrane-organized receptors which modulate membrane-bound energy transduction. The energy-dependent state of membranes was in turn considered to determine the sensitivity of membrane-bound receptors. The structural and functional principles for the physiological oscillators were supposed to be the same as those underlaying the theory of membrane-bound energy transduction (1,2). The circadian system is genetically fixed and provides the temporal frame for physiological and behavioural patterns that are necessary for survival of organisms and populations. In photoperiodic acclimation of organisms photoredox systems most likely function in signal transduction as modulators of vectorial metabolism in general and of co-translational and post-translational protein translocation in particular (1,3,4).


Circadian Rhythm Energy Transduction Euglena Gracilis Endogenous Rhythmicity Chenopodium Rubrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Wagner, Molecular basis of physiological rhythms, in “Society for Experimental Biology Symposium 31”, University Press, Cambridge (1977).Google Scholar
  2. 2.
    E. Wagner and B. G. Cumming, Betacyanin accumulation, chlorophyll content and flower initiation in Chenopodium rubrum as related to endogenous rhythmicity and phytochrome action, Can. J. Bot. 48: 1 (1910).CrossRefGoogle Scholar
  3. 3.
    E. Wagner, S. Bissbort, M. Schwall, A. Lecharny, R. Bergfeld, I. Kossmann, M. Bonzon, and H. Greppin, Circadian rhythmicity in energy metabolism: A prerequisite for the cooperation between the organelles of eukaryotic cells, Int. J. on Endocytobiosis and Cell Research 1, in press (1984).Google Scholar
  4. 4.
    E. Wagner, U. Haertle, I. Kossmann, and S. Frosch, Metabolic and developmental adaptation of eukaryotic cells as related to endogenous and exogenous control of translocators between subcellular compartments, in “Endocytobiology II”, H. Schenk and W. Schwemmler, eds., Walter de Gruyter & Co., Berlin, New York (1983).Google Scholar
  5. 5.
    E. Bunning, “Die physiologische Uhr”, Springer Verlag, Berlin (1977).CrossRefGoogle Scholar
  6. 6.
    E. Bunning, Die endogene Tagesrhythmik als Grundlage der photoperiodischen Reaktion, Ber. Deutsch. Bot. Ges. 54: 590 (1936).Google Scholar
  7. 7.
    B. G. Cumming and E. Wagner, Rhythmic processes in plants, Ann. Rev. Plant Physiol. 19: 381 (1968).CrossRefGoogle Scholar
  8. 8.
    A. J. Mandell, Redundant mechanisms regulating brain tyrosine and tryptophan hydroxylases, Ann. Rev. Pharmacol. Toxicol. 18: 461 (1978).CrossRefGoogle Scholar
  9. 9.
    A. J. Mandell and P. V. Russo, Striatal tyrosine hydroxylase activity: multiple conformational kinetic oscillators and product concentration frequencies, J. Neurosci. 1: 380 (1981).PubMedGoogle Scholar
  10. 10.
    A. Goldbeter and S. R. Caplan, Oscillatory enzymes, Ann. Rev. Biophys. Bioengineering 5: 449 (1976).CrossRefGoogle Scholar
  11. 11.
    S. Jerebzoff, Systèmes métaboliques oscillants chez les végétaux inférieurs, Bull. Soc. Bot. Fr. 126: 23 (1979).Google Scholar
  12. 12.
    A. Boiteux and B. Hess, Design of glycolysis, Phil. Trans. R. Soc. London B 293: 5 (1981).CrossRefGoogle Scholar
  13. 13.
    D. Gooch and L. Packer, Oscillatory states of mitochondria. Studies on the oscillatory mechanism of liver and heart mitochondria, Arch. Biochem. Biophys. 163: 759 (1974).PubMedCrossRefGoogle Scholar
  14. 14.
    T. Vanden Driessche, K. J. Doege, C. Minder, and W. L. Cairns, Circadian rhythm in cyclic AMP content in Acetabularia, in “Chronopharmacology”, A. Reinberg and F.• Halberg, eds., Pergamon Press, Oxford and New York (1979).Google Scholar
  15. 15.
    A. Boiteux, B. Hess, and E. E. Sel’Kov, Creative functions of of instability and oscillations in metabolic systems, in “Current Topics in Cellular Regulation, Vol. 17”, Academic Press, New York (1980).Google Scholar
  16. 16.
    W. Könitz, Elektronenmikroskopische Untersuchungen an Euglena gracilis im tagesperiodischen Licht-Dunkel-Wechsel, Planta (Berlin) 66: 345 (1965).CrossRefGoogle Scholar
  17. 17.
    S. Murakami and L. Packer, Light-induced changes in the conformation and configuration of the thylakoid membrane of Ulva and Porphyra chloroplasts in vivo, Plant Physiol. 45: 289 (1970).PubMedCrossRefGoogle Scholar
  18. 18.
    A. V. Gylkhandanyan, Yu. V. Evtodienko, A. M. Zhabotinsky, and M. N. Kondrashova, Continuous Sr2+-induced oscillations of the ionic fluxes in mitochondria, FERS Lett. 66: 44 (1976).CrossRefGoogle Scholar
  19. 19.
    W. J. Vredenberg, Energy control of ion transport processes at the membranes of cells and organelles, Ber. Deutsch. Bot. Ges. 87: 473 (1974).Google Scholar
  20. 20.
    B. Novak and C. Sironval, Circadian rhythms of the transcellular current in regenerating enucleated posterior stalk segments of Acetabularia mediterranea, Plant Sci. Lett. 6: 273 (1976).CrossRefGoogle Scholar
  21. 21.
    U. Lüttge and C. K. Pallaghy, Light triggered transient changes of membrane potentials in green cells in relation to photosynthetic electron transport, Zeitschr. Pflanzenphysiol. 61: 58 (1969).Google Scholar
  22. 22.
    E. M. Gifford and K. D. Steward, Ultrastructure of vegetative and reproductive apices of Chenopodium album, Science 149: 75 (1965).PubMedCrossRefGoogle Scholar
  23. 23.
    R. W. King, Multiple circadian rhythms regulate photoperiodic flowering responses, Chenopodium rubrum, Can. J. Bot. 53: 2631 (1975).CrossRefGoogle Scholar
  24. 24.
    D. Nachmansohn in “Proc. Intern. Symp. Impact Basic Sciences Medicine, Jerusalem 1965”, B. Shapiro and M. Prywes, eds., Academic Press, New York (1966).Google Scholar
  25. 25.
    T. Ebrey, Fast light-evoked potential from leaves, Science 155: 1556 (1967).PubMedCrossRefGoogle Scholar
  26. 26.
    Y. Yamaguti, Über elektrische Potentialveränderungen an periodisch sich bewegenden Primärblättern von Canavalia ensiformis, D.C., Botanical Magazine (Tokyo) 46: 216 (1932).Google Scholar
  27. 27.
    R. Aimi and S. Shibasaki, Diurnal change in bioelectric potential of Phaseolus plant in relation to the leaf movement and light condition, Plant and Cell Physiol. 16: 1157 (1975).Google Scholar
  28. 28.
    J. M. D. Rutenfranz and W. P. Colquhoun, Circadian rhythms in human performance, Scand. J. Work, Environ. & Health 5: 167 (1979).CrossRefGoogle Scholar
  29. 29.
    T. A. Wehr, D. Sack, N. Rosenthal, W. Duncan, and J. C. Gillin, Circadian rhythm disturbances in manic-depressive illness, Fed. Proc. 42: 2809 (1983).PubMedGoogle Scholar
  30. 30.
    L. H. Pratt, Molecular properties of phytochrome, Photochem. Photobiol. 27: 81 (1978).CrossRefGoogle Scholar
  31. 31.
    D. Marmé, Phytochrome: Membranes as possible sites of primary action, Ann. Rev. Plant Physiol. 28: 173 (1977).CrossRefGoogle Scholar
  32. 32.
    J.-P. Changeux, The acetylcholine receptor an “allosteric” membrane protein, in “The Harvey Lectures Series 75”, Academic Press, London (1981).Google Scholar
  33. 33.
    P. H. Quail, Phytochrome: a regulatory photoreceptor that controls the expression of its own gene, TIES 9: 450 (1984).Google Scholar
  34. 34.
    K. Brinkmann, Circadian rhythm in the kinetics of acid denaturation of cell membranes of Euglena gracilis, Planta (Berlin) 129: 221 (1976).CrossRefGoogle Scholar
  35. 35.
    E. Bunning and I. Moser, Light-induced phase shifts of circadian leaf movements of Phaseolus: comparison with the effects of potassium and of ethyl alcohol, Proc. Natl. Acad. Sci. USA 70: 3387 (1973).PubMedCrossRefGoogle Scholar
  36. 36.
    P. Mitchell, Vectorial chemistry and the molecular mechanics of chemiosmotic coupling: power transmission by proticity, Biochem. Soc. Transactions 4: 399 (1976).Google Scholar
  37. 37.
    E. Wagner, S. Frosch, and G. F. Deitzer, Metabolic control of photoperiodic time measurement, J. Interdisciplinary Cycle Res. 5: 240 (1974a).CrossRefGoogle Scholar
  38. 38.
    E. Wagner, S. Frosch, and G. F. Deitzer, Membrane oscillator hypothesis of photoperiodic control, in “Proceedings of the Annual European Symposium on Plant Photomorphogenesis”, J. A. De Greff, ed., Campus of the State University Center, Antwerp (1974b).Google Scholar
  39. 39.
    L. N. Edmunds Jr. and V. P. Cirillo, On the interplay among cell cycle, biological clock and membrane transport control systems, International J. Chronobiol. 2: 233 (1974).Google Scholar
  40. 40.
    D. Njus, F. M. Sulzman, and J. W. Hastings, Membrane model for the circadian clock, Nature 248: 116 (1974).PubMedCrossRefGoogle Scholar
  41. 41.
    S. Frosch and E. Wagner, Endogenous rhythmicity and energy transduction. II. Phytochrome action and the conditioning of rhythmicity of adenylate kinase. NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenase in Chenopodium rubrum by temperature and light intensity cycles during germination, Can. J. Bot. 51: 1521 (1973a).CrossRefGoogle Scholar
  42. 42.
    S. Frosch, E. Wagner, and H. Mohr, Control by phytochrome of the level of nicotinamide nucleotides in the cotyledons of the mustard seedling, Z. Naturforsch. 290: 392 (1974).Google Scholar
  43. 43.
    M. Jabben and M. G. Holmes, Phytochrome in light-grown plants, in “Encyclopedia of Plant Physiology, New Series 16B, Photomorphogenesis”, W. Shropshire, Jr. and H. Mohr, eds., Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1983).Google Scholar
  44. 44.
    J. F. Allen, Oxygen reduction and optimum production of ATP in photosynthesis, Nature 256: 599 (1975).CrossRefGoogle Scholar
  45. 45.
    T. Tezuka and Y. Yamamoto, Kinetics of activation of nicotinamìde adenine dinucleotide kinase by phytochrome-far-redabsorbing form, Plant Physiol. 53: 717 (1974).PubMedCrossRefGoogle Scholar
  46. 46.
    R. B. Taylorson and S. B. Hendricks, Aspects of dormancy in vascular plants, Bioscience 26: 95 (1976).CrossRefGoogle Scholar
  47. 47.
    H. Greppin, B. A. Horwitz, and L. P. Horwitz, Light-stimulated bioelectric response of spinach leaves and photoperiodic induction, Z. Pflanzenphysiol. 68: 336 (1973).CrossRefGoogle Scholar
  48. 48.
    H. Greppin and B. Horwitz, Floral induction and the effect of red and far-red preillumination on the light-stimulated bio-electric response of spinach leaves, Z. Pflanzenphysiol. 75: 243 (1975).Google Scholar
  49. 49.
    K. M. Hartmann, “Die Regulationder Gametogenese von Chlamydomonas eugametos und Chlamydomonas moewusii durch exogene und endogene Faktoren. Vergleichende morphologische, physiologische und biophysikalische Untersuchungen. Dissertation der Eberhard-Karls-Universität Tübingen (1962).Google Scholar
  50. 50.
    W. Haupt, Schwachlichtbewegung des Mougeotia-Chloroplasten im Blaulicht, Z. Pflanzenphysiol. 65: 248 (1971).Google Scholar
  51. 51.
    R. D. Brain, J. A. Freeberg, C. V. Weiss, and W. R. Briggs, Blue light-induced absorbance changes in membrane fractions from corn and Neurospora, Plant Physiol. 59: 948 (1977).PubMedCrossRefGoogle Scholar
  52. 52.
    S. Frosch and E. Wagner, Endogenous rhythmicity and energy transduction. III. Time course of phytochrome action in adenylate kinase, NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenase in Chenopodium rubrum, Can. J. Bot. 51: 1529 (1973).CrossRefGoogle Scholar
  53. 53.
    J. M. Anderson, H. Charbonneau, H. P. Jones, R. O. McCann, and M. J. Cormier, Characterization of the plant nicotinamide adenine dinucleotide kinase activator protein and its identification as calmodulin, Biochemistry 19: 3113 (1980).PubMedCrossRefGoogle Scholar
  54. 54.
    F. L. Bygrave, The ionic environment and metabolic control, Nature 214: 667 (1967).PubMedCrossRefGoogle Scholar
  55. 55.
    J. E. Wilson, Ambiquitous enzymes: Variation in intracellular distribution as a regulatory mechanism, Trends Biochem. Sci. 3: 124 (1978).CrossRefGoogle Scholar
  56. 56.
    S. De Looze, In vitro and in vivo regulation of chloroplast glyceraldehyde-3-phosphate dehydrogenase isozymes from Chenopodium rubrum. III. The molecular basis of the aggregation phenomenon: chloroplast glyceraldehyde-3-phosphate dehydrogenase as an ambiquitous enzyme. Physiol. Plant. 57:243 (1983).Google Scholar
  57. 57.
    K. R. Porter and J. B. Tucker, The ground substance of the living cell, Scientific American 244: 41 (1981).CrossRefGoogle Scholar
  58. 58.
    S. R. Hameroff and R. C. Watt, “Computer-like” information processing in cytoskeletal proteins, Biophys. J. B7: A348 (1982).Google Scholar
  59. 59.
    T. S. Sorensen and J. L. Castillo, Spherical drop of cytoplasm with an effective surface tension influenced by oscillating enzymatic reactions, J. Colloid Interface Sci. 76: 399 (1980).CrossRefGoogle Scholar
  60. 60.
    H. G. Schweiger and E. Schweiger, The role of the nucleus in a cytoplasmic diurnal rhythm, in “Circadien Clocks”, J. Aschoff, ed., North-Holland, Amsterdam (1965).Google Scholar
  61. 61.
    M. Zouaghi, D. Klein-Eude, and P. Rollin, Phytochrome regulated transfer of fructosidase from cytoplasm to cell wall in Raphanus sativus L. hypocotyls, Planta 147: 7 (1979).CrossRefGoogle Scholar
  62. 62.
    A. Ghorbel, B. Mouatassim, and L. Faye, Studies on B-fructosidase from radish seedlings. V Immunochemical evidence for an enzyme photoregulated transfer from cytoplasm to cell wall, Plant Sci. Lett. 35: 35 (1984).CrossRefGoogle Scholar
  63. 63.
    G. Blobel, Regulation of intracellular protein traffic, Cold Spring Harbor Symp. Quant. Biol. 46: 7 (1982).Google Scholar
  64. 64.
    P. Walter and G. Blobel, Translocation of proteins across the endoplasmic reticulum. III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes, J. Cell Biol. 91: 557 (1981).PubMedCrossRefGoogle Scholar
  65. 65.
    E. Wagner and L. Fukshansky, Die zeitliche Organisation des eukaryotischen Energiestoffwechsels als Grundlage für die Signalverarbeitung im Photo-und Thermoperiodismus, Ber. Deutsch. Bot. Ges., in press (1985).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • E. Wagner
    • 1
  • M. Bonzon
    • 2
  • H. Greppin
    • 2
  1. 1.Department of Biology IIUniversity of FreiburgFreiburgGermany
  2. 2.Department of Plant PhysiologyUniversity of GenevaGenève 4Switzerland

Personalised recommendations