Molecular Study on Solute Carriers in Biomembranes, Exemplified by Two Well-Characterized Carriers from Mitochondria, the ADP/ATP Carrier and the Uncoupling Protein

  • Martin Klingenberg
Part of the NATO ASI Series book series (NSSA, volume 91)


Specific solute transport is a central function of biomembranes for facilitating the translocation of specific solutes such as metabolites and concomittant ions. For this purpose biomembranes are equipped with specific catalysts, biomembrane carriers or translocators which catalyze the transport of these solutes. This process is not yet well understood and one of the most important problems of membrane functions waited to be solved. Since the central issue in the transport is the catalytic translocation across the membrane, it is advantageous to concentrate on those systems where the catalyst has only this function.


Brown Adipose Tissue Adenine Nucleotide Uncouple Protein Pyridoxal Phosphate Binding Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Kolarov and M. Klingenberg, The adenine nucleotide trans-locator in genetically and physiologically modified yeast mitochondria, FEBS Lett. 45: 320 (1974).PubMedCrossRefGoogle Scholar
  2. 2.
    D. G. Nicholls, The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution, Eur. J. Biochem. 50: 305 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    M. Klingenberg, H. Hackenberg, R. Krämer, C. S. Lin and H. Aquila, Two transport proteins from mitochondria: I. Mechanistic aspects of asymmetry of the ATP/ATP trans-locator. II. The uncoupling protein of brown adipose tissue mitochondria, Ann. N.Y. Acad. Sci. 358: 83 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    C. S. Lin and M. Klingenberg, Isolation of the uncoupling protein from brown adipose tissue mitochondria, FEBS Lett. 113: 299 (1970).CrossRefGoogle Scholar
  5. 5.
    M. J. Weidemann, H. Erdelt and M. Klingenberg, Adenine nucleotide translocation of mitochondria. Identification of carrier sites, Eur. J. Biochem. 15: 313 (1970).CrossRefGoogle Scholar
  6. 6.
    C. S. Lin and M. Klingenberg, Characteristics of the isolated purine nucleotide binding protein from brown fat mitochondria, Biochemistry 21: 2950 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Klingenberg, P. Riccio and H. Aquila, Isolation of the ADP/ ATP carrier as the carboxyatractylate-protein complex from mitochondria, Biochim. Biophys. Acta 503: 193 (1978).PubMedCrossRefGoogle Scholar
  8. 8.
    P. Riccio, H. Schägger, W.D. Engel and G. von Jagow, bell-Complex from beef heart: One-step purification by hydroxyapatite chromatography in Triton X-100, polypeptide pattern, Biochim. Biophys. Acta 459: 250 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    U. I. Flügge and H. W. Heldt, The phosphate translocator of the chloroplast envelope, isolation of the carrier protein and reconstitution of transport, Biochim. Biophys. Acta 638: 296 (1981).CrossRefGoogle Scholar
  10. 10.
    G. Unden, H. Hackenberg and A. Kröger, Isolation and functional aspects of the fumarate reductase involved in the phosphorylative electron transport of Vibrio succinogenes, Biochim. Biophys. Acta 591: 275 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Kröger, E. Winkler, A. Innerhofer, H. Hackenberg and H. Schägger, The formate dehydrogenase involved in electron transport from formate to fumarate in Vibrio succinogenes, Eur. J. Biochem. 94: 465 (1979).PubMedCrossRefGoogle Scholar
  12. 12.
    H. Hackenberg and M. Klingenberg, Molecular weight and hydrodynamic parameters of the adenosine 5’-diphosphateadenosine 5’-triphosphate carrier in Triton X-100, Biochemistry 19: 548 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    C. S. Lin, H. Hackenberg and M. Klingenberg, The uncoupling protein from brown adipose tissue mitochondria is a dimer. A hydrodynamic study, FEBS Lett. 113: 304 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    P. Riccio, H. Aquila and M. Klingenberg, Purification of the carboxy-atractylate binding protein from mitochondria, FEBS Lett. 56: 133 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Klingenberg, P. Riccio, H. Aquila, B.B. Buchanan and K. Grebe, Mechanism of carrier transport and the ADP/ATP carrier, in: “The Structural Basisof Membrane Functions,” Y. Hatefi and L. Djavadi-Ohaniance, eds., Academic Press, New York, pp. 293–311 (1975).Google Scholar
  16. 16.
    M. Klingenberg, Membrane protein oligomeric structure and transport function, Nature 290: 449 (1981).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Klingenberg, The mechanism of the mitochondrial ADP/ATP carrier as studied by the kinetics of ligand binding, in:“Dynamics of Energy-Transducing Membranes,” L.Ernster et al., eds., Elsevier, Amsterdam, pp. 511–528 (1974).Google Scholar
  18. 18.
    H. Aquila, W. Eiermann, W. Babel and M. Klingenberg, Isolation of the ADP/ATP translocator from beef heart mitochondria as the bongkrekate-protein complex, Eur. J. Biochem. 85: 549 (1978).PubMedCrossRefGoogle Scholar
  19. 19.
    I. Mayer, A. S. Dahms, W. Riezler and M. Klingenberg, Interaction of fluorescent adenine nucleotide derivatives with the ADP/ATP carrier in mitochondria. 1. Comparison of various 3’-0-ester adenine nucleotide derivatives, Biochemistry 23: 2436 (1984).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Klingenberg, I. Mayer and A. S. Dahms, Interaction of fluorescent adenine nucleotide derivatives with the ADP/ ATP carrier in mitochondria. 2. (5-(dimethyl-amino)-1naphthoyl)adenine nucleotides as probes for the transition between c-and m-states of the ADP/ATP carrier, Biochemistry 23: 2442 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Klingenberg, Characteristics of the uncoupling protein from brown fat mitochondria, Biochem. Soc. Transactions 12: 390 (1984).Google Scholar
  22. 22.
    P. V. Vignais, P. M. Vignais and G. Defaye, Adenosine di-phosphate translocation in mitochondria. Nature of the receptor site for carboxyatractyloside, Biochemistry 12: 1508 (1973).PubMedCrossRefGoogle Scholar
  23. 23.
    M. Klingenberg, K. Grebe and B. Scherer, The binding of atractylate and carboxy-atractylate to mitochondria, Eur. J. Biochem. 52: 351 (1975).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Klingenerg, H. Buchholz, H. Erdelt, G. Falkner, K. Grebe, H. Kadner, B. Scherer, L. Stengel-Rutkowski and M. J. Weidemann, The adenine nucleotide carrier: study of its translocating mechanism by binding with adenosine di-phosphate, atractyloside and bongkrekic acid, in:“BioChemistry and Biophysics of Mitochondrial Membranes,” G. F. Azzone et al., eds., Academic Press, New York/ London, pp. 465–486 (1972).Google Scholar
  25. 25.
    G. E. Lienhard, Transition analogue inhibitors, Science 188: 149 (1973).CrossRefGoogle Scholar
  26. 26.
    W. P. Jencks, Binding energy, specificity, and enzymic catalysis: the circe effect, in: “Advances in Enzymology, Vol. 43,” A. Meister, ed., John Wiley & Sons, New York, pp. 219–410 (1975).Google Scholar
  27. 27.
    H. Aquila, D. Misra, M. Eulitz and M. Klingenberg, Complete amino acid sequence of the ADP/ATP carrier from beef heart mitochondria, Hoppe Seyler’s Z. Physiol.Chem. 363: 345 (1982)PubMedCrossRefGoogle Scholar
  28. 28.
    J. Keyte and R. F. Doolittle, A simple method for displaying hydropathis character of a protein, J. Mol. Biol. 157: 105 (1982).CrossRefGoogle Scholar
  29. 29.
    M. Saraste and J. E. Walker, Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase, FEBS Lett. 144: 250 (1982).PubMedCrossRefGoogle Scholar
  30. 30.
    W. Bogner, H. Aquila and M. Klingenberg, Surface labeling of membrane-bound ADP/ATP carrier by pyridoxal phosphate, FEBS Lett. 146: 259 (1982).CrossRefGoogle Scholar
  31. 31.
    W. Bogner, H. Aquila and M. Klingenberg, Probing the structure of the ADP/ATP carrier with pyridoxal phosphate, in: “Structure and Function of Membrane Proteins,” E. Qualiariello and F. Palmieri, eds., Elsevier Science Publ., Amsterdam, pp. 145–156 (1983).Google Scholar
  32. 32.
    B. Scherer and M. Klingenberg, Demonstration of the relationship between the adenine nucleotie carrier and the structural changes of mitochondria as induced by adenosine 5’-diphosphate, Biochemistry 13: 161 (1974).PubMedCrossRefGoogle Scholar
  33. 33.
    B. B. Buchanan, W. Eiermann, P. Riccio, H. Aquila and M. Klingenberg, Antibody evidence for different conformational states of ADP/ATP translocator protein isolated from mitochondria, Proc. Natl. Acad. Sci. 73: 2280 (1976).PubMedCrossRefGoogle Scholar
  34. 34.
    W. Eiermann, H. Aquila and M. Klingenberg, Immunological characterization of the ADP/ATP translocator protein isolated from mitochondria of liver, heart and other organs, evidence for an organ specificity, FEBS Lett. 74: 209 (1977).PubMedCrossRefGoogle Scholar
  35. 35.
    H. Aquila and M. Klingenberg, The reactivity of -SH groups in the ADP/ATP carrier isolated from beef heart mitochondria, Eur. J. Biochem. 122: 141 (1982).PubMedCrossRefGoogle Scholar
  36. 36.
    M. Klingenberg and M. Appel, Is there a common binding center in the ADP/ATP carrier for substrate and inhibitors? Amino acid reagents and the mechanism of the ADP/ATP translocator, FEBS Lett. 119: 195 (1980).PubMedCrossRefGoogle Scholar
  37. 37.
    M. R. Block, G.J.M. Lauquin and P.V.C. Vignais, Chemical modification of atractyloside and bongkrekic acid binding sites of the mitochondrial adenine nucleotide carrier. Are there distinct binding sites? Biochemistry 20: 2692 (1981).PubMedCrossRefGoogle Scholar
  38. 38.
    M. R. Block, J. M. Lauquin and P. V. Vignais, Differential inactivation of atractyloside and bongkrekic acid binding sites on the adenine nucleotide carrier by ultraviolet light. Its implication for the carrier mechanism, FEBS Lett. 104: 425 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Martin Klingenberg
    • 1
  1. 1.Institut für Physikalische BiochemieUniversität MünchenMünchenDeutschland

Personalised recommendations