Light Induced Generation of a Proton Motive Force and Ca++-Transport in Membrane Vesicles of Streptococcus Cremoris Fused with Bacteriorhodopsin Proteoliposomes

  • Arnold J. M. Driessen
  • Klaas J. Hellingwerf
  • Wil N. Konings
Part of the NATO ASI Series book series (NSSA, volume 91)


The chemiosmotic hypothesis (Mitchell, 1966,1972) postulates that proton translocation by primary proton pumps generates an electrochemical proton gradient (∆p) across the cytoplasmic membrane. The electrochemical proton gradient or proton motive force (pmf) is composed of electrical and chemical parameters according to the equation:
$$\Delta p=\Delta \psi -2.3\text{ RT/F }\!\!\Delta\!\!\text{ pH (mV)} $$
where ∆ψ represents the electrical potential and ∆pH the chemical potential of protons across the membrane (2.3 RT/F is equal to 58.8 mV at 25°C).


Membrane Vesicle Energy Transfer Efficiency Proton Translocation Purple Membrane Electrochemical Proton Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amesz, B. N., and Dubin, D. T., 1960, The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid, J. Biol. Chem., 235: 769.Google Scholar
  2. Arents, J. C., van Dekken, H., Hellingwerf, K. J., and Westerhoff, H. V., 1981, Linear relations between proton current and pH gradient in Bacteriorhodopsin liposomes, Biochemistry, 20: 5114.PubMedCrossRefGoogle Scholar
  3. Bakker, E. P., Rottenberg, H., and Caplan, S. R., 1976, An estimation of the light-induced electrochemical potential difference of protons across the membrane of Halobacterium halobium, Biochim. Biophys. Acta, 440: 557.PubMedCrossRefGoogle Scholar
  4. Bragg, P. D., 1979, Electron transport and energy transducing systems in E. coli, in: “Membrane Proteins in Energy Transduction”, R.A. Capaldi, ed., Marcel Dekker AG, Basel.Google Scholar
  5. Casadio, R., Venturoli, G., and Melandri, B. A., 1981, Light-induced transmembrane potential difference in chromatophores of photosynthetic bacteria: Measurements with an ion-selective mini-electrode, Photobiochem. Photobiophys., 2: 245.Google Scholar
  6. Casadio, R., Venturoli, G., and Melandri, B. A., 1982, Studies on Phospholipid Enriched Chromatophores from Rps. sphaeroides, Characterization and Perspectives, in: “Short Reports of the 2nd European Bioenergetics Conference”, Université Claude Bernard, Lyon.Google Scholar
  7. Danon, A., and Stoeckenius, W., 1974, Photophosphorylation in Halobacterium halobium, Proc. Natl. Acad. Sci. USA, 71: 1234.PubMedCrossRefGoogle Scholar
  8. Ebrey, T., Becker, B., Mao, B., Kilbride, P., and Honig, B., 1977, Exciton interactions and chromophore orientation in the purple membrane, J. Mol. Biol., 112: 377.PubMedCrossRefGoogle Scholar
  9. Eisenbach, M., Garty, H., Bakker, E. P., Klemperer, G., Rottenberg, H., and Caplan, S. R., 1978, Kinetic analysis of light induced pH changes in Bacteriorhodopsin, containing particles from Halobacterium halobium, Biochemistry, 17: 4691.PubMedCrossRefGoogle Scholar
  10. Fraley, R., Wilschut, J., Düzgunes, N., Smith, C., and Papahadjopoulos, D., 1980, Studies on the mechanism of membrane fusion: Role of phosphate in promoting calcium ion-induced fusion of phospholipid vesicles, Biochemistry, 19: 6021.PubMedCrossRefGoogle Scholar
  11. Happe, M., Teather, R. M., Overath, P., Knobling, A., and Oesterhelt, D., 1977, Direction of proton translocation in proteo-liposomes formed from purple membrane and acidic lipids depends on the pH during reconstitution, Biochim. Biophys. Acta, 465: 415.PubMedCrossRefGoogle Scholar
  12. Harold, F. M., Pavlasova, E., and Baarda, J. R., 1970, A transmembrane pH gradient in Streptococcus faecalis: origin and dissipation by proton conductors and N,N’-dicyclohexyl carbodiimide, Biochim. Biophys. Acta, 196: 235.PubMedCrossRefGoogle Scholar
  13. Harold, F. M., 1977, Membranes and energy transduction in bacteria, Curr. Top. Bioenerg., 6: 83.Google Scholar
  14. Hellingwerf, K. J., 1979, “Structural and Functional Studies on Lipid Vesicles Containing Bacteriorhodopsin”, Ph.D. Thesis, University of Amsterdam.Google Scholar
  15. Hellingwerf, K. J., Arents, J. C., Scholte, B. J., and Westerhoff, H. V., 1979, Bacteriorhodopsin in liposomes. II. Experimental evidence in support of a theoretical model. Biochim. Biophys. Acta, 547: 561.PubMedCrossRefGoogle Scholar
  16. Hellingwerf, K. J., and Koninqs, W. N., 1980, Kinetic and steady state investigations of solute accumulation in bacterial membranes by continuously monitoring the radioactivity in the effluent of flow-dialysis experiments, Eur. J. Biochem., 106: 431.PubMedCrossRefGoogle Scholar
  17. Hellingwerf, K. J., and Konings, W.N., 1984, The energy flow in bacteria: the main free energy intermediates and their regulatory role, Adv. Microb. Physiol., in press.Google Scholar
  18. Kaback, H. R., 1974, Transport studies in bacterial membrane vesicles, Science, 186: 882.PubMedCrossRefGoogle Scholar
  19. Kaback, H. R., 1982, Membrane vesicles, electrochemical ion gradients, and active transport, Curr. Top. Membr. Transp., 16: 393.CrossRefGoogle Scholar
  20. Konings, W. N., and Michels, P. A. M., 1980, Electron Transfer Chain Solute Translocation across Bacterial Membranes, in: “Diversity of Bacterial Respiratory Systems”, C. J. Knowles, ed., CRC Press Inc., Boca Raton.Google Scholar
  21. Lanyi, J. K., 1979, The role of Na+ in transport processes of bacterial membranes, Biochim. Biophys. Acta, 559: 377.PubMedGoogle Scholar
  22. Lolkema, J. S., Hellingwerf, K. J., and Konings, W. N., 1982, The effect of “probe binding” on the quantitative determination of the proton motive force in bacteria, Biochim. Biophys. Acta, 681: 85.CrossRefGoogle Scholar
  23. Lowry, O. H., Rosebrough, N. J., Farr, A. J., and Randall, R. J., 1851, Protein measurements with the Folin phenol reagent, J. Biol. Chem., 193: 265.Google Scholar
  24. Maloney, P. C., 1982, Coupling between H+ entry and ATP synthesis in bacteria, Curr. Top. Membr. Transp., 16: 175.CrossRefGoogle Scholar
  25. Michels, P. A. M., Michels, J. P. J., Boonstra, J., and Konings, W. N., 1979, Generation of an electrochemical gradient in bacteria by the excretion of metabolic endproducts, FEMS Microbiol. Lett., 5: 357.CrossRefGoogle Scholar
  26. Mitchell, P., 1966, “Chemiosmotic Coupling and Energy Transduction”, Glynn Research Ltd., Bodmin.Google Scholar
  27. Mitchell, P., 1972, Chemiosmotic coupling in energy transduction: a logical development of biochemical knowledge, Bioenergetics, 3: 5.CrossRefGoogle Scholar
  28. Mukohata, Y., and Kaji, Y., 1981, Light-induced membrane potential increase, ATP synthesis, and proton uptake in Halobacterium halobium R1mR catalyzed by halorhodopsin: Effects of N,N’-dicyclohexylcarbodiimide, triphenyltin chloride and 3,5-ditert-buty1–4-hydroxybenzylidenemalononitrile (SF 6847), Arch. Biochem. Biophys., 290: 72.CrossRefGoogle Scholar
  29. Oesterhelt, D., and Hess, B., 1973, Reversible photolysis of the purple complex in the purple membrane of Halobacterium halobium, Eur. J. Biochem., 37: 316.PubMedCrossRefGoogle Scholar
  30. Otto, R., Sonnenberg, A. S. M., Veldkamp, H. and Konings, W. N., 1980, Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux, Proc. Natl. Acad. Sci. USA, 77: 5502.PubMedCrossRefGoogle Scholar
  31. Otto, R., Lageveen, R. G., Veldkamp, H. and Konings, W. N., 1982, Lactate efflux induced electrical potential in membrane vesicles of Streptococcus cremoris, J. Bacteriol., 149: 733.PubMedGoogle Scholar
  32. Otto, R., 1981, “An Ecophysiological Study of Starter Streptococci”, Ph.D. Thesis, University of Groningen.Google Scholar
  33. Pennoyer, J. D., Kramer, H. J. M., van Grondelle, R., Westerhuis, W., Amesz, I., and Niederman, R.A., 1984, Excitation energy transfer in Rhodopseudomonas sphaeroides chromatophore membrane fused to liposomes, FEBS Lett., in press.Google Scholar
  34. Racker, E., 1973, A new procedure for the reconstitution of biologically active phospholipid vesicles, Biochem. Biophys. Res. Commun., 55: 224.PubMedCrossRefGoogle Scholar
  35. Ritchey, T. W., and Seeley, H. W., 1976, Distribution of cytochrome-like respiration in streptococci., J. Gen. Microbiol., 93: 195.PubMedGoogle Scholar
  36. Rosen, B. P., 1983, Bacterial Calcium Transport Systems, in: “Metal Ions in Biological Systems 17”, H. Sigel, ed., Elsevier/North Holland, Amsterdam.Google Scholar
  37. Schneider, H., Lemasters, J. J., Hochli, M., and Hackenbrock, C. R., 1980a, Fusion of liposomes with mitochondrial inner membranes. Proc. Natl. Acad. Sci. USA, 77: 442.PubMedCrossRefGoogle Scholar
  38. Schneider, H., Lemasters, J. J., Hochli, M., and Hackenbrock, C. R. 1980b, Liposomes, mitochondrial inner membrane fusion, J. Biol. Chem., 255: 3749.Google Scholar
  39. Selwyn, M. J., Dawson, A. P., Stockdale, M., and Gains, N., 1980, Chloride-hydroxide exchange across mitochondrial, erythrocyte and artificial lipid membranes mediated by trialkyl-and tri-phenyl his compounds, Eur. J. Biochem., 14: 120.CrossRefGoogle Scholar
  40. Sijpensteijn, A. K., 1970, Induction of cytochrome formation and stimulation of oxidative dissimilation of hemin in Streptococcus lactis and Leuconostoc mesenteroides, Ant. Leeuwenh., 36: 335.CrossRefGoogle Scholar
  41. Shinbo, T., Kama, N., Kurihara, K. and Kobatake, Y., 1978, A PVC-based electrode sensitive to DDA+ as a device for monitoring the membrane potential in biological systems, Arch. Biochem. Biophys., 187: 414.PubMedCrossRefGoogle Scholar
  42. Skulachev, V. P., 1984, Membrane bioenergetics - Should we build the bridge across the river or alongside of it? Tr. Biochem. Sci., 9: 182.CrossRefGoogle Scholar
  43. Snozzi, M., and Crofts, A. R., 1984, Electron transport in chromatophores from Rhodopseudomonas sphaeroides GA fused with liposomes, Biochim. Biophys. Acta, 766: 451.PubMedCrossRefGoogle Scholar
  44. Stoeckenius, W., and Kunau, W. H., 1968, Further characterization of particulate fractions from lysed cell envelopes of Halobacterium halobium and isolation of gas vacuole membranes, J. Cell. Biol., 38: 337.CrossRefGoogle Scholar
  45. Struck, D. K., Hoekstra, D., and Pagano, R. E., 1981, Use of resonance energy transfer to monitor membrane fusion, Biochemistry, 20: 4093.PubMedCrossRefGoogle Scholar
  46. Ten Brink, B., and Konings, W. N., 1980, Generation of an electrochemical proton gradient by lactate efflux in Escherichia coli membrane vesicles, Eur. J. Biochem., 111: 59.PubMedCrossRefGoogle Scholar
  47. Ten Brink, B, 1984, “The Generation of Metabolic Energy in Bacteria: The Energy Recycling Model”, Ph.D. Thesis, University of Groningen.Google Scholar
  48. Tokumaga, F., and Ebrey, T., 1978, The blue membrane: the 3-dehydroretinal based artificial pigment of the purple membrane, Biochemistry, 17: 1915.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Arnold J. M. Driessen
    • 1
  • Klaas J. Hellingwerf
    • 1
  • Wil N. Konings
    • 1
  1. 1.Department of MicrobiologyUniversity of GroningenHarenThe Netherlands

Personalised recommendations