Kinetics of Proton-Transport-Coupled ATP Synthesis Driven by an Artificially Generated Δ PH and Δ ψ

  • Ulrike Junesch
  • Gerlinda Thulke
  • Peter Gräber
Part of the NATO ASI Series book series (NSSA, volume 91)


Coupling of vectorial transport phenomena and scalar chemical reactions occur at practically all biological membranes. Of special importance is the coupling between ion transport and ATP synthesis/ hydrolysis which is effected by membrane-bound enzymes, the ATPases. In photosynthetic vesicles of chloroplasts, this reaction is coupled with proton translocation across the thylakoid membrane and can be described by:
$$ ADP+{{P}_{i}}+nH\frac{+}{in}\rightleftharpoons ATP+nH\frac{+}{out}$$
where ADP, ATP and Pi (inorganic phosphate) stand for the total concentration of the respective compound, including all its ionization states that depend on Mg2+ and H+ concentration; n is the number of protons which are translocated per ATP synthesized/hydrolyzed; H in + H out + are the proton concentration inside and outside of the vesicle.


Diffusion Potential Electron Transport Inhibitor Proton Efflux Transmembrane Electric Potential Difference Acid Base Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Mitchell, Nature 191:144 (1961)PubMedCrossRefGoogle Scholar
  2. 2.
    A.T. Jagendorf and E. Uribe, Proc. Natl. Acad. Sci. USA 55:170 (1966)CrossRefGoogle Scholar
  3. 3.
    H.T. Witt, E. Schlodder, and P. Gräber, FEBS Lett. 69:272 (1976)PubMedCrossRefGoogle Scholar
  4. 4.
    E. Schlodder, P. Gräber, and H.T. Witt, in: “Electron ransport and Phosphorylation”, pp. 105–175, J. Barber, ed., Elsevier, Amsterdam (1982)Google Scholar
  5. 5.
    E. Uribe and B.C.Y. Li, Bioenergetics 4:435 (1973)CrossRefGoogle Scholar
  6. 6.
    P. Gräber, U. Junesch, and G.H. Schatz, Ber. Bunsenges. Physik. Chemie 88:599 (1984)Google Scholar
  7. 7.
    M. Avron, Biochim. Biophys. Acta 40:257 (1960)Google Scholar
  8. 8.
    B. Rumberg and T. Heinze, Ber. Bunsenges. Physik. Chemie 84:1055 (1980)Google Scholar
  9. 9.
    P.D. Boyer, in: “Bionergetics of Membranes”, C.P. Lee, ed., Addison-Wesley (1979)Google Scholar
  10. 10.
    C. Kayalar, J. Rosing, and P.D. Boyer, Biochem. Bio­phys. Res. Comm. 72:1153 (1976)Google Scholar
  11. 11.
    Ch. Winkler, Biochem. Biophys. Res. Comm. 99:1095 (1981)Google Scholar
  12. 12.
    S. Bickel-Sandkötter and H. Strotmann, FEBS Lett. 125:188 (1981)CrossRefGoogle Scholar
  13. 13.
    B. Rumberg and U. Siggel, Naturwiss. 56:130 (1969)PubMedCrossRefGoogle Scholar
  14. 14.
    U. Pick, H. Rottenberg, and M. Avron, FEBS Lett. 32:91 (1973)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Ulrike Junesch
    • 1
  • Gerlinda Thulke
    • 1
  • Peter Gräber
    • 1
  1. 1.Max-Volmer-Institut für Biophysikalische und Physikalische ChemieTechnische Universität BerlinBerlin 12Germany

Personalised recommendations