Halorhodopsin, the Light-Dependent Chloride Transport System of Halobacteria

  • Janos K. Lanyi
Part of the NATO ASI Series book series (NSSA, volume 91)


The halobacteria are microorganisms, adapted to growth and survival in nearly saturated brines (Larsen, 1967; Kushner, 1978). Because their intracellular salt concentration is also very high but consists mainly of KCl rather than NaCl, it might be expected that the exclusion of sodium ions and the uptake of potassium ions is an important function of their cytoplasmic membrane. Indeed, a powerful sodium/proton antiport system has been described (Lanyi and MacDonald, 1976; Eisenbach et al, 1977) in these membranes, driven by protonmotive force created by outward proton transport during respiration (under aerobic conditions) or during illumination though the operation of bacteriorhodopsin, a retinal protein with proton translocating activity. The respiratory chain is not very unusual for a bacterial membrane (Lanyi, 1968; Cheah, 1969), but bacteriorhodopsin is unique for the halobacteria, and its study has contributed greatly to our understanding of how proton pumps function (Stoeckenius et al, 1979). Another aspect of the membrane bioenergetics of these organisms is the transport of chloride. Since the concentration of this anion in the cytoplasm is nearly the same as in the medium, and a large membrane potential (negative inside) exists during growth, chloride in these organisms is far from its electrochemical equilibrium and must be imported by active transport.


Chloride Transport Chloride Binding Retinal Protein Proton Uptake Anion Binding Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ariki, M. and Lanyi, J.K. (1984) J.Biol.Chem. 259, 3504–3510.PubMedGoogle Scholar
  2. Bamberg, E., Hegemann, P. and Oesterhelt, D. (1984a) Biochim.Biophys. Acta (in press)Google Scholar
  3. Bamberg, E., Hegemann, P. Oesterhelt, D. (1984b) Biochemistry (in press)Google Scholar
  4. Bogomolni, R.A. and Spudich, J.L. (1982) Proc.Nat.Acad.Sci.U.S.A. 79, 6250–6254.CrossRefGoogle Scholar
  5. Bogomolni, R.A., Stubbs, L. and Lanyi, J.K. (1978) Biochemistry 17, 1037–1041.PubMedCrossRefGoogle Scholar
  6. Bogomolni, R.A., Taylor, M.E. and Stoeckenius, W. (1984) Proc.Nat. Acad.Sci.U.S.A. (in press)Google Scholar
  7. Cheah, K.S. (1969) Biochim.Biophys.Acta 180, 320–333.PubMedCrossRefGoogle Scholar
  8. Druckmann, S., Ottolenghi, M., Pande, J. and Callender, R.H. (1982) Biochemistry 21, 4953–4959.PubMedCrossRefGoogle Scholar
  9. Eisenbach, M., Cooper, S., Garty, H., Johnstone, R.M., Rottenberg, H. and Caplan, S.R. (1977) Biochim.Biophys.Acta 465, 599–613.PubMedCrossRefGoogle Scholar
  10. Falke, J.J., Chan, S.I., Steiner, M., Oesterhelt, D., Towner, P. and Lanyi, J.K. (1984) J.Biol.Chem. 259, 2185–2189.PubMedGoogle Scholar
  11. Greene, R.V. and Lanyi, J.K. (1979) J.Biol.Chem. 254, 10986–10994.PubMedGoogle Scholar
  12. Greene, R.V., MacDonald, R.E. and Perreault, A.J. (1980) J.Biol. Chem. 255, 3254–3257.Google Scholar
  13. Hegemann, P., Steiner, M. and Oesterhelt, D. (1982) EMBO J. 1, 1177–1183.PubMedGoogle Scholar
  14. Hess, B. and Kuschmitz, D. (1979) FEBS Lett. 100, 334–340.PubMedCrossRefGoogle Scholar
  15. Kuschmitz, D. and Hess, B. (1982) FEBS Lett. 138, 137–140.CrossRefGoogle Scholar
  16. Kushner, D.J. (1978) in Microbial Life in Extreme Environments (ed. D.J. Kushner), pp. 317–368, Academic Press, LondonGoogle Scholar
  17. Lanyi, J.K. (1968) Arch.Biochem.Biophys. 128, 716–724.PubMedCrossRefGoogle Scholar
  18. Lanyi, J.K. (1974) Bacteriol. Rev. 38, 272–290.PubMedGoogle Scholar
  19. Lanyi, J.K. and Schobert, B. (1985) J.Biol.Chem. (in press)Google Scholar
  20. Lanyi, J.K. (1984a) Biochem.Biophys.Res.Comm. 122, 91–96.PubMedCrossRefGoogle Scholar
  21. Lanyi, J.K. (1984b) FEBS Lett. (in press)Google Scholar
  22. Lanyi, J.K. and MacDonald, R.E. (1979) Methods Enzymol. 56, 398–407.PubMedCrossRefGoogle Scholar
  23. Lanyi, J.K. and Oesterhelt, D. (1982) J.Biol.Chem. 257, 2674–2677.PubMedGoogle Scholar
  24. Lanyi, J.K. and Schobert, B. (1983) Biochemistry 22, 2763–2769.CrossRefGoogle Scholar
  25. Lanyi, J.K. and Weber, H.J. (1980) J.Biol.Chem. 255, 243–250.PubMedGoogle Scholar
  26. Larsen, H. (1967) Adv.Microbial Physiol. 1, 97–132.CrossRefGoogle Scholar
  27. Lindley, E.V. and MacDonald, R.E. (1979) Biochem.Biophys.Res.Comm. 88, 491–499.PubMedCrossRefGoogle Scholar
  28. Luisi, B.F., Lanyi, J.K. and Weber, H.J. (1980) FEBS Lett. 117, 354–358.PubMedCrossRefGoogle Scholar
  29. MacDonald, R.E., Greene, R.V., Clark, R.D. and Lindley, R.V. (1979) J.Biol.Chem. 254, 11831–11838.PubMedGoogle Scholar
  30. MacDonald, R.E. and Lanyi, J.K. (1975) Biochemistry 14, 2882–2889.PubMedCrossRefGoogle Scholar
  31. Oesterhelt, D., Schuhmann, L. and Gruber, H. (1974) FEBS Lett. 44, 257–261.PubMedCrossRefGoogle Scholar
  32. Oesterhelt, D. and Schuhmann, L. (1974) FEBS Lett. 44, 262–265.PubMedCrossRefGoogle Scholar
  33. Ogurusu, T., Maeda, A. and Yoshizawa, T. (1984) J.Biochem. (Tokyo) 95, 1073–1082.Google Scholar
  34. Schobert, B. and Lanyi, J.K. (1982) J.Biol.Chem. 257, 10306–10313.PubMedGoogle Scholar
  35. Schobert, B., Lanyi, J.K. and Cragoe, E.J., Jr. (1983) J.Biol. Chem. 258, 15158–15164.PubMedGoogle Scholar
  36. Selwyn, M.J., Dawson, A.P., Stockdale, M. and Gains, N. (1970) Eur.J.Biochem. 14, 120–126.PubMedCrossRefGoogle Scholar
  37. Spudich, J.L. and Bogomolni, R.A. (1983) Biophys.J. 43, 243–246.PubMedCrossRefGoogle Scholar
  38. Steiner, M. and Oesterhelt, D. (1983) EMBO J. 2, 1379–1385.PubMedGoogle Scholar
  39. Sugiyama, Y. and Mukohata, Y. (1984) J.Biochem. (Tokyo) 96, 413–420.Google Scholar
  40. Steiner, M., Oesterhelt, D., Ariki, M. and Lanyi, J.K. (1984) J.Biol. Chem. 259, 2179–2184.PubMedGoogle Scholar
  41. Stoeckenius, W., Lozier, R.H. and Bogomolni, R.A. (1979) Biochim. Biophys.Acta 505, 215–278.PubMedGoogle Scholar
  42. Taylor, M.E., Bogomolni, R.A. and Weber, H.J. (1983) Proc.Nat.Acad. Sci.U.S.A. 80, 6172–6176.CrossRefGoogle Scholar
  43. Tsuda, M., Hazemoto, N., Kondo, M., Kobatake, Y. and Terayama, Y. (1982) Biochem.Biophys.Res.Comm. 108, 970–976.PubMedCrossRefGoogle Scholar
  44. Wagner, G., Oesterhelt, D., Krippahl, G. and Lanyi, J.K. (1981) FEBS Lett. 131, 341 345.Google Scholar
  45. Weber, H.J. and Bogomolni, R.A. (1981) Photochem.Photobiol. 33, 601–608.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Janos K. Lanyi
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of CaliforniaIrvineUSA

Personalised recommendations