The Role of Cations in the Photoinduced Electron Transport of Cyanobacteria

  • G. C. Papageorgiou
  • K. Kalosaka
  • T. Lagoyanni
  • G. Sotiropoulou
Part of the NATO ASI Series book series (NSSA, volume 91)

Abstract

The complex series of cooperative photophysical, physicochemical and biochemical processes, whose integrated outcome is oxygenic photosynthesis, takes place in the thylakoid membrane of plants, which is electrically charged on both sides. Due to the preponderence of ionized negative groups (protein carboxyls, pKa = 3.8−4.8; phospholipid and sulfolipid headgroups, pKa =2.0), over positive groups (amino-, guanidino-, imidazolylo-; pKa =9.2−12.5), the net charge on the surfaces of the membrane is negative. The overall surface charge density,taking into account both sides of the membrane, is approx. 1–3 μC/m2. The outer thylakoid surface has a pKa of 4.3, and the inner of 4.1, indicating that all these groups are ionized in the physiological pH range (reviewed in 1–4). This surface electricity underlies an extensive body of phenomenology reported in the literature, concerning the regulatory effects of electrolytes, and particularly of cations, on the partial processes of photosynthesis. Applying the Gouy-Chapman theory of the diffuse double layer, Barber [1,2] made a serious attempt to systematize many of the reported observations.

Keywords

Chlorophyll Choline Hepes Diphenyl Sorbitol 

Abbreviations

Chl

chlorophyll

DBMIB

2,5-dibromo-3-methy1-6isopropyl-p-benzoquinone

DCIP

2,6-dichlorophenol indophenol

DCMU

3-(3’,4’-dichlorophenyl)-1,1-dimethyl urea

DPC

diphenyl carbazide

FD

ferredoxin

FeCN

K3[Fe(CN)6]

Hepes

N-2-hydroxyethyl piperazine-N-ethane sulfonic acid

LHC

light-harvesting chlorophyll a/b protein

MV

methylviologen

PD

p-phenylene diamine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Barber, Membrane surface charges and potentials in relation to photosynthesis, Biochim. Biophys. Acta 594: 253 (1980).Google Scholar
  2. 2.
    J. Barber, Influence of surface charges on thylakoid structure and function, Ann. Rev. Plant Physiol. 33: 261 (1982).CrossRefGoogle Scholar
  3. 3.
    W. Junge and J.B. Jackson, The development of electrochemical potential gradients across photosynthetic membranes, in “Photosynthesis: Energy conversion by plants and bacteria,” Govindjee, ed., Academic Press, New York (1982).Google Scholar
  4. 4.
    W. Junge, Electrogenic reactions and proton pumping in green plant photosynthesis, in “Current topics in membranes and transport,” C.L. Slayman, ed., vol. 16, Academic Press, New York (1982).Google Scholar
  5. 5.
    A.T. Jagendorf, Mechanism of photophosphorylation, in “Bioenergetics of Photosynthesis,” Govindjee, ed., Academic Press, New York (1975).Google Scholar
  6. 6.
    S. Lien and A. San Pietro, Interaction of plastocyanin and P700 in photosystem I reaction center particles from Chlamydomonas reinhardi and spinach, A.ch. Biochem. Biophys. 194: 128 (1979).CrossRefGoogle Scholar
  7. 7.
    G.K. Ozakian and P. Satir, Particle movements in chloroplast membranes: quantitative measurements of membrane fluidity by freeze-fracture technique, Proceed. Nat. Acad. Sci. USA 21: 2052 (1974).CrossRefGoogle Scholar
  8. 8.
    S. Kaplan and C. Arntzen, “Photosynthetic membrane structure and function, in Photosynthesis: Energy conversion by plants and bacteria”, Govindjee, ed., Academic Press, New York (1982).Google Scholar
  9. 9.
    A.T. Jagendorf and M. Smith, Uncoupling of phosphorylation in spinach chloroplasts by absence of cations, Plant Physiol. 37: 135 (1962).PubMedCrossRefGoogle Scholar
  10. 10.
    N. Murata, Control of excitation transfer in photosynthesis. II. Magnesium ion dependent distribution of excitation energy between two pigment systems in spinach thylakoids, Biochim. Biophys. Acta 189: 171 (1969).CrossRefGoogle Scholar
  11. 11.
    N. Murata, Effects of monovalent cations on light energy distribution between two pigment systems in photosynthesis in isolated spinach chloroplasts, Biochim. Biophys. Acta 197: 250 (1971).Google Scholar
  12. 12.
    C.A. Wraight and A.R. Crofts, Energy-dependent quenching of chlorophyll a fluorescence in isolated chloroplasts, Dux. J. Biochem. 17: 319 (1970).Google Scholar
  13. 13.
    G.C. Papageorgiou, Chlorophyll fluorescence: an intrinsic probe of photosynthesis, in “Bioenergetics of Photosynthesis”, Govindjee, ed., Academic Press, New York (1975).Google Scholar
  14. 14.
    G.H. Krause, J.-M. Briantais and C. Vernotte, Characterization of chlorophyll fluorescence quenching in chloroplasts by fluorescence spectroscopy at 77 K. I. ApH-dependent quenching, Biochim.Biophys.Acta 723: 169 (1983).CrossRefGoogle Scholar
  15. 15.
    G.C. Papageorgiou, M. Tsimili-Michael and J. Isaakidou, Quenching of excited chlorophyll a in vivo by nitrobenzene, Biophys. J. 15: 83 (1975).PubMedCrossRefGoogle Scholar
  16. 16.
    G.C. Papageorgiou, On the mechanism of the PMS effected quenching of chloroplast fluorescence, Arch. Biochem. Biophys. 166: 330 (1975).CrossRefGoogle Scholar
  17. 17.
    G.C. Papageorgiou, Applications of spectroscopy to biological research, in “Problems of contemporary biophysics”, Polish Scientific Publishing Company, Warsawa-todz (1979).Google Scholar
  18. 18.
    C. Bonaventura and J. Myers, Fluorescence and oxygen evolution from Chlorella pyrenoidosa, Biochim. Biophys. Acta 189: 366 (1969).CrossRefGoogle Scholar
  19. 19.
    W.P. Williams, D. Furtado and A.R. Nutbeam, Comparison between state I/state II adaptation in a unicellular green alga and high energy state quenching in isolated intact spinach chloroplasts, Photochem. Photobiophys. 1: 91 (1980).Google Scholar
  20. 20.
    J. Barber, An explanation for the relationship between salt-induced thylakoid stacking and chlorophyll fluorescence changes associated with changes in spillover of energy from photosystem II to photosystem I, FEBS Lett. 118: 1 (1980).CrossRefGoogle Scholar
  21. 21.
    E. Gantt, Structure and function of phycobilisomes: Light-harvesting pigment complexes in red and blue-green algae, Intern. Rev. Cytol. 66: 45 (1980).CrossRefGoogle Scholar
  22. 22.
    G. Cohen-Bazire and D.A. Bryant, Phycobilisomes: Composition and structure in “The Biology of Cyanobacteria”, N.G. Carr and B.A. Whitton, eds., Blackwell, Oxford (1982).Google Scholar
  23. 23.
    A.N. Glazer, Phycobilisomes: Structure and dynamics, Ann. Rev. Microbiol. 36: 173 (1982).CrossRefGoogle Scholar
  24. 24.
    M. Mimuro and Y. Fujita, Excitation energy transfer between pigment system II units in blue-green algae, Biochim. Biophys. Acta 504: 406 (1978).CrossRefGoogle Scholar
  25. 25.
    A. Manodori and A. Melis, Photochemical apparatus organization in Anacystis nidulans (cyanophyceae), Plant Physiol. 74: 67 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    N. Murata, The lipid phase of photosynthetic membranes, in Advances in photosynthesis research, C. Sybesma, ed., vol. 3, M. Nijhoff/Dr. W. Junk, The Hague (1984).Google Scholar
  27. 27.
    T. Omata and N. Murata, Isolation and characterization of the cytoplasmic membranes from the blue-green alga (cyanobacterium) Anacystis nidulans, Plant and Cell Physiol. 24: 1101 (1983).Google Scholar
  28. D.J. Murphy and I.E. Woodrow, Lateral heterogeneity in the distribution of thylakoid membrane lipid and protein components and implications for the molecular organization of photosynthetic membranes, Biochim. Biophys. Acta 725:104 (1983).Google Scholar
  29. 29.
    K. Kalosaka and G.C. Papageorgiou, Surface electric properties of thylakoid fragments isolated from vegetative and heterocystous cyanobacteria, in Advances in photosynthesis research, C. Sybesma ed., vol. 2, M. Nijhoff/Dr. W. Junk, the Hague (1984).Google Scholar
  30. 30.
    R. Barr, K.S. Troxel and F.L. Crane, Calmodulin antagonists inhibit electron transport in photosystem II of spinach chloroplasts, Biochem. Biophys. Res. Commun. 104: 1182 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    R.R. England and E.H. Evans: A requirement for Câ + in the extraction of 02-evolving photosystem 2 preparations from the cyanobacterium Anacystis nidulans. Biochem. J. 210: 473 (1983).PubMedGoogle Scholar
  32. 32.
    E.K. Pistorius, Effects of Mn2+, Ca2+ and chlorpromazine on photosystem II of Anacystis nidulans: An attempt to establish a functional relationship of aminoacid oxidase to photosystem II. Eur. J. Biochem. 135: 218 (1983).CrossRefGoogle Scholar
  33. 33.
    R. Barr, K.S. Troxel and F.L. Crane, A calcium selective site in photosystem II of spinach chloroplasts, Plant Physiol. 73: 309 (1973).CrossRefGoogle Scholar
  34. 34.
    D.F. Ghanotakis, G.T. Babcock and C.F. Yocum, Calcium reconstitutes high rates of 02 evolution in polypeptide-depleted photosystem I preparations, FEBS Lett. 167: 127 (1984).CrossRefGoogle Scholar
  35. 35.
    D.F. Ghanotakis, J.N. Topper, G.T. Babcock and C.F. Yocum, Water-soluble 17 and 23 kDa polypeptides restore 02 evolution activity in creating a high affinity binding site for Ca2+ on the oxidizing side of photosystem II, FEBS Lett. (in press 1984).Google Scholar
  36. 36.
    M. Miyao and N. Murata, Calcium ions can be substituted for the 24 kDa polypeptide in photosynthetic oxygen evolution, FEBS Lett. 168: 118 (1984).CrossRefGoogle Scholar
  37. 37.
    R.G. Piccioni and D.C. Mauzerall, Calcium and photosynthetic 02 evolution in cyanobacteria, Biochim. Biophys. Acta 504: 384 (1978).CrossRefGoogle Scholar
  38. 38.
    Brand, J.J., The effect of Ca2+on oxygen evolution in membrane preparations from Anacystis nidulans. FEBS Letters 103: 114 (1979).CrossRefGoogle Scholar
  39. 39.
    G.C. Papageorgiou, Photosynthetic activity of diimidoestermodified cells permeaplasts and cell-free membrane fragments of the blue-green alga Anacystis nidulans, Biochim. Biophys. Acta 461: 379 (1977).CrossRefGoogle Scholar
  40. 40.
    G. MacKinney, Absorption of light by chlorophyll solutions, J. Biol. Chem. 140: 315 (1941).Google Scholar
  41. 41.
    T.A. Kursav and R.S.Alberte, Photosynthetic unit organization in a red alga, Plant Physiol. 42: 409 (1983).CrossRefGoogle Scholar
  42. 42.
    B. Gerhardt and A. Trebst, Photosynthetische Reaktionen in lyophilisierten Zellen der Blaualge Anacystis, Z. Naturforsch. 20B:879 (196).Google Scholar
  43. 43.
    U.W. Hallier and R.B. Park, Photosynthetic light reactions in chemically fixed Anacystis nidulans, Chlorella pyrenoidosa and and Porphyridium cruentum, Plant Physiol. 44: 535 (1969).PubMedCrossRefGoogle Scholar
  44. 44.
    B. Ward and J. Myers, Photosynthetic properties of permeaplasts of Anacystis, Plant Physiol. 50: 547 (1972).PubMedCrossRefGoogle Scholar
  45. 45.
    A. Binder, E. Tel-Or and M. Auron, Photosynthetic activities of membrane preparations of the blue-green alga Phormidium luridum, Eur. J. Biochem. 67: 187 (1976).PubMedCrossRefGoogle Scholar
  46. 46.
    G.C. Papageorgiou and H. Tzani, Action of lysozyme on glutaraldehyde-treated filaments of the cyanobacterium Phormidium luridum, J. Appl. Biochem. 2: 230 (1980).Google Scholar
  47. 47.
    H. Spiller, Photophosphorylation capacity of stable spheroplast preparations of Anabaena, Plant Physiol. 66: 446 (1980).PubMedCrossRefGoogle Scholar
  48. 48.
    S.J. Robinson, C.S. De Roo and C.F. Yocum, Photosynthetic ele electron transfer in preparations of the cyanobacterium Spirulina platensis, Plant Physiol. 70: 154 (1982).PubMedCrossRefGoogle Scholar
  49. 49.
    G. Sotiropoulou, T. Lagoyanni, and G.C. Papageorgiou, Effects of Cat+ ions on the light-induced electron-transport activities of Anacystis nidulans permeaplasts and spheroplasts, in Advances in photosynthesis research, C. Sybesma, ed., vol. 2, M. Nijhoff/Dr. W. Junk, The Hague (1984).Google Scholar
  50. 50.
    T. Hiyama and B. Ke, Laser-induced reactions of P700 and cytochrome f in a blue-green alga, Plectonema boryanum, Biochim. Biophys. Acta 226: 320 (1971).CrossRefGoogle Scholar
  51. 51.
    W. Haehnel, The reduction of chlorophyll a as an indicator for proton uptake between the light reactions of chloroplasts, Biochim. Biophys. Acta 440: 506 (1976).CrossRefGoogle Scholar
  52. 52.
    W. Haehnel, Structural and quantitative analysis of membrane-bound components of the photosystem I complex of spinach ch chloroplasts by immunological methods, in “Bioenergetics of membranes”, L. Packer, G.C. Papageorgiou, and A. Trebst, eds., Elsevier/North-Holland, Amsterdam (1977).Google Scholar
  53. 53.
    W. Hoehnel, A. Propper, H. Krause, Evidence for completed plastocyanin as the immediate electron donor of P700, Biochim. Biophys. Acta 593: 384 (1980).CrossRefGoogle Scholar
  54. 54.
    S. Lien and A. San Pietro, Interaction of plastocyanin and P700 in photosystem I reaction center particles from Chlamydomonas reinhardi and Spinach, A.ch. Biochem. Biophys. 194: 128 (1979).CrossRefGoogle Scholar
  55. 55.
    Wood, P.M., Interchangeable copper and iron proteins in algal photosynthesis, Europ. J. Biochem. 87: 9 (1978).PubMedCrossRefGoogle Scholar
  56. 56.
    Böhme H. and P. Boger, Reciprocal formation of cytochrome c-553 and plastocyanin in Scenedesmus, FEBS Letters 85: 337 (1978).CrossRefGoogle Scholar
  57. 57.
    K.K. Ho and D.W. Krogmann, Photosynthesis in “The biology of cyanobacteria”, N.G. Carr and B.A. Whitton, eds., Blackwell, Oxford (1982).Google Scholar
  58. 58.
    B. Bouges-Bocquet and R. Delosme, Evidence for a new electron donor to P700 in Chlorella pyrenoidosa, FEBS Letters 94: 100 (1978).CrossRefGoogle Scholar
  59. 59.
    S. Katoh, Plastocyanin, Meth. Enzymol. 23: 408 (1971).CrossRefGoogle Scholar
  60. 60.
    W.L. Ellefson, E.A. Ulrich, and D.W. Krogmann, Plastocyanin, Meth. Enzymol. 69: 223 (1980).CrossRefGoogle Scholar
  61. 61.
    K. Matsuura and M. Nishimura, Sidedness of membrane structures in Rhodopseudomonas spheroides. Electrochemical titration of the spectrum changes of carotenoid in spheroplast, spheroplast membrane vesicles, and chromatophores, Biochim. Biophys. Acta 459: 483 (1977).PubMedCrossRefGoogle Scholar
  62. 62.
    J.W. Costerton, J.M. Ingram and K.-J. Cheng, Structure and function of the cell envelope of Gram negative bacteria, Bacteriol. Rev. 38: 87 (1974).PubMedGoogle Scholar
  63. 63.
    K.K. Karukstis and K. Sauer, Fluorescence decay kinetics of chlorophyll in photosynthetic membranes, J. Cellular Biochem. 23: 131 (1983).CrossRefGoogle Scholar
  64. 64.
    S. McLaughlin, Electrochemical potentials at membrane-solution interfaces, in Current Topics in Membranes and Transport, F. Bronner and A. Kleinzeller, eds., vol. 9, Academic Press, New York (1977).Google Scholar
  65. 65.
    R.A. Wavare and P. Mohanty, Aluminum stimulation of photoelectron transport in spheroplasts of cyanobacterium Synechococcus cedrorum, Photobiochem. Photobiophys. 3: 327 (1982).Google Scholar
  66. 66.
    R.A. Wavare and B. Subbalakshmi and P. Mohanty, Effect of Ala+ on electron transport catalysed by photosystem I and II of photosynthesis in cyanobacterium Synechococcus spheroplasts and beet-spinach chloroplasts, Indian J. Biochem. Biophys. 20: 301 (1983).PubMedGoogle Scholar
  67. 67.
    R.A. Wavare and P. Mohanty, Cations stimulate electron transport associated with photosystem II and inhibit electron flow linked with photosystem I in spheroplasts of the cyanobacterium Synechococcus cedrorum, Photobiochem. Photobiophys. 6: 189 (1983).Google Scholar
  68. 68.
    M.L. Richter and P.H. Homann, Surface-charge related actions of polylysine on thylakoid membranes, Arch. Biochem. Biophys. 222: 67 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • G. C. Papageorgiou
    • 1
  • K. Kalosaka
    • 1
  • T. Lagoyanni
    • 1
  • G. Sotiropoulou
    • 1
  1. 1.Department of BiologyNuclear Research Center DemokritosAghia Paraskevi, AthensGreece

Personalised recommendations