Advertisement

Fluorescence Studies of Lipid Order in Proteoliposomes Containing Cytochrome P-490 and Its Reductase

  • Barbara C. Kunz
  • Mike Rehorek
  • Christoph Richter
Part of the NATO ASI Series book series (NSSA, volume 91)

Abstract

Cytochrome P-450 and NADPH-cytochrome P-450 reductase are key enzymes of the hepatic microsomal monooxygenase system. They catalyze the oxidative and reductive metabolism of endogenous substrates and various xenobiotics (1–3). These enzymes are also involved in the biotransformation of physiologically important compounds such as fatty acids, prostaglandins, leukotrienes, and steroids. The reductase (Mr ~ 78,000) is anchored to the membrane of the endoplasmatic reticulum via a small (Mr ~ 6,000 – 10,000) hydrophobic segment (4,5). The large hydrophilic part, which contains 1 molecule of FMN and FAD, protrudes from the membrane into the cytoplasmic space. The topology of P-450 (Mr ~ 50,000) in membranes, on the other hand, is currently unknown (6). Limited proteolysis of microsomes does not release a soluble catalytic domain but results in conversion of P-450 to the catalytically inactive form P-420 (7). It therefore appears that P-450 is not simply anchored to the membrane by a single hydrophobic domain as its reductase. Recent sequencing studies support this view. P-450 and reductase can be isolated and reconstituted in a enzymatically active form.

Keywords

Heme Group Monooxygenase System Fluorescence Decay Curve Relative Quantum Yield Lipid Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Estabrook, R.W., Werringloer, J., and Peterson, J.A. (1979) Xenobiotic Metabolism: In Vitro Methods (Paulson, G.D., Frear, D.S., and Marks, E.P., eds) Symposium Series No. 97, pp. 149–179, American Chemical Society, Washington D.C.Google Scholar
  2. (2).
    White, R.E., and Coon, M.J. (1980) Annu. Rev. Biochem. 49, 315–356PubMedCrossRefGoogle Scholar
  3. (3).
    Omura, T. (1978) in Cytochrome P-450 (Sato, R., and Omura, T., eds) Chap. 1, Kodanska, TokyoGoogle Scholar
  4. (4).
    Gum, J.R., and Strobel, H.W. (1979) J. Biol. Chem. 254, 4177–4185PubMedGoogle Scholar
  5. (5).
    Black, S.D., French, J.S., Williams, C.H. Jr., and Coon, M.J. (1979) Biochem. Biophys. Res. Commun. 91, 1528–1535PubMedCrossRefGoogle Scholar
  6. (6).
    De Pierre, J.W., and Ernster, L. (1977) Annu. Rev. Biochem. 46, 201–262CrossRefGoogle Scholar
  7. (7).
    Sato, R., Nishibayashi, H., and Ito, A. (1969) in Microsomes and Drug Oxidations (Gillette, J.R., Conney, A.H., Cosmides, G., Estabrook, R.W., Fouts, JR., and Mannering, G.J., eds) pp. 111–132, Academic Press, New YorkGoogle Scholar
  8. (8).
    Singer, S.J., and Nicolson, G.L. (1972) Science 175, 720–731PubMedCrossRefGoogle Scholar
  9. (9).
    Etemadi, A.H., (1980) Biochim. Biophys. Acta. 604, 347–422PubMedCrossRefGoogle Scholar
  10. (10).
    Etemadi, A.H., (1980) Biochim. Biophys. Acta. 604, 423–475PubMedCrossRefGoogle Scholar
  11. (11).
    Kawato, S., Gut, J., Cherry, R.J., Winterhalter, K.H., and Richter, C. (1982) J. Biol. Chem. 257, 7023–7029Google Scholar
  12. (12).
    Richter, C., Winterhalter, K.H., and Cherry, R.J. (1979) FEBS Lett. 102, 141–154CrossRefGoogle Scholar
  13. (13).
    Mc Intosh, P.R., Kawato, S., Freedman, R.B., and Cherry, R.J. (1980) FEBS Lett. 122, 54–58CrossRefGoogle Scholar
  14. (14).
    Greinert, R., Staerk, H., Stier, A., and Weller, A. (1979) J. Biochem. Biophys. Methods 1, 77–83PubMedCrossRefGoogle Scholar
  15. (15).
    Boesterling, B., and Trudell, J.R. (1982) J. Biol. Chem. 257, 4783–4787Google Scholar
  16. (16).
    Gut, J., Richter, C., Cherry, R.J., Winterhalter, K.H., and Kawato, S. (1982) J. Biol. Chem. 257, 7030–7036PubMedGoogle Scholar
  17. (17).
    Gut, J., Richter, C., Cherry, R.J., Winterhalter, K.H., and Kawato, S. (1983) J. Biol. Chem. 258, 8599–8594Google Scholar
  18. (18).
    Nisimoto, Y., Kinosita, K., Jr., Ikegami, A., Kawai, N., Ichihara, I., and Shibata, Y. (1983) Biochemistry 22, 3594–3603CrossRefGoogle Scholar
  19. (19).
    Haaparanta, T., Rydstroem, J., and Ingelman-Sundberg, M. (1980) in Microsomes, Drug Oxidations, and Chemical Carcinogenesis (Coon, M.J., Conney, A.H., Estabrook, R.W., Gelboin, H.V., Gillette, J.R., and O’Brien, P.J. eds) pp. 533–536, Academic press, New YorkGoogle Scholar
  20. (20).
    Ingelmann-Sundberg, M.J., Haaparanta, T., and Rydstroem, J. (1981) Biochemistry 20, 4100–4106CrossRefGoogle Scholar
  21. (21).
    Taniguchi, H., Imai, Y., and Sato, R. (1980) in Microsomes, Drug Oxidations, and Chemical Carcinogenesis (Coon, M.J., Conney, A.H., Estabrook, R.W., Gelboin, H.V., Gillette, J.R., and O’Brien, P.J. eds) pp. 537–540, Academic press, New YorkGoogle Scholar
  22. (22).
    Gibson, G.G., Sligar, S.G., Cinti, D.L., and Schenkman, J.B. (1980) in Microsomes, Drug Oxidationsand Chemical Carcinogenesis (Coon, M.J., Conney, A.H., Estabrook, R.W., Gelboin, H.V., Gillette, J.R., and O’Brien, P.J., eds.) pp.119–122, Academic Press, New YorkGoogle Scholar
  23. (23).
    Yang, C.S., and Tsong, T.Y. (1980) in Microsomes, Drug Oxidations and Chemical Carcinogenesis (Coon, M.J., Conney, A.H., Estabrook, R.W., Gelboin, H.V., Gillette, J.R., and O’Brien, P.J., eds.) pp. 199–202, Academic Press, New YorkGoogle Scholar
  24. (24).
    Shinitzky, M., and Barenholz, Y. (1978) Biochim. Biophys. Acta 515, 367–394PubMedGoogle Scholar
  25. (25).
    Shinitzky, M., and Barenholz, Y. (1974) J. Biol. Chem. 249, 2652–2657PubMedGoogle Scholar
  26. (26).
    Kinosita, K., Jr., Kawato, S., and Ikegami, A. (1984) Adv. Biophys. 17, 147–202PubMedCrossRefGoogle Scholar
  27. (27).
    Shinitzky, M., and Barenholz, Y. (1978) Biochim. Biophys. Acta 515, 367PubMedGoogle Scholar
  28. (28).
    Kawato, S., Kinosita, K., Jr., and Ikegami, A. (1977) Biochemistry 16, 2319–2324PubMedCrossRefGoogle Scholar
  29. (29).
    Kellerer, H., and Blumen, A. (1984) Biophys. J. 46, 1–8PubMedCrossRefGoogle Scholar
  30. (30).
    Wolber, P.K., and Hudson, B.S. (1979) Biophys, J. 28, 197–210PubMedCrossRefGoogle Scholar
  31. (31).
    Koppel, D.E., Fleming, P.J., and Strittmatter, P. (1979) Biochemistry 18, 5450–5457PubMedCrossRefGoogle Scholar
  32. (32).
    Dewey, T.G., and Hammes, G.G. (1980) Biophys. J. 32, 1023–1036CrossRefGoogle Scholar
  33. (33).
    Fung, B.K., and Stryer, L. (1978) Biochemistry 17, 5241–5248PubMedCrossRefGoogle Scholar
  34. (34).
    Estep, T.N., and Thompson, T.E. (1979) Biophys. J. 26, 195–208PubMedCrossRefGoogle Scholar
  35. (35).
    Rehorek, M., Dencher, N.A., and Heyn, M.P. (1983) Biophys. J. 43, 39–45PubMedCrossRefGoogle Scholar
  36. (36).
    Kinosita, K., Jr., Kawato, S., Ikegami, S., Yoshida, S., and Orii, Y. (1981) Biochim. Biophys. Acta 647, 7–17PubMedCrossRefGoogle Scholar
  37. (37).
    Heyn, M.P. (1979) FEBS Lett. 108, 359–364PubMedCrossRefGoogle Scholar
  38. (38).
    Dale, R.E., Eisinger, J., and Blumberg, W.E. (1979) Biophys. J. 26, 161–194PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Barbara C. Kunz
    • 1
  • Mike Rehorek
    • 2
  • Christoph Richter
    • 1
  1. 1.Eidgenoessische Technische Hochschule, Laboratorium für Biochemie IETH-ZentrumZurichSwitzerland
  2. 2.Biocenter of the University of BaselBaselSwitzerland

Personalised recommendations