Mechanisms of Membrane Lipid Peroxidation

  • Larry G. McGirr
  • Peter J. O’Brien
Part of the NATO ASI Series book series (NSSA, volume 91)


Lipid peroxidation is associated with CCl4-induced hepatotoxicity and various pathological changes associated with the toxicity of some metals, herbicides, drugs, carcinogens, photosensitizers and ozone or NO2. It has also been associated with atheroschlerosis, tumorigenesis and metastases, red cell disorders, inflammation, burns, eye cataracts, skin disorders, neurological disturbances, lung fibrosis, aging, etc. Dietary antioxidants and metal chelators are often protective. However, it remains to be proven whether lipid peroxidation is a direct cause of these toxic effects rather than a consequence (1–8).


Xanthine Oxidase Methyl Linoleate Lipid Hydroperoxide Hydroxyl Radical Formation Initiate Lipid Peroxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. J. O’Brien, Oxidation of Lipids in Biological Membranes and Intracellular Consequences, in: “Autoxidation of Unsaturated Lipids,” H. Chan, ed., Academic Press, London (in press).Google Scholar
  2. 2.
    D. C. H. McBrien and T. F. Slater, eds., in: “Free Radicals Lipid Peroxidation and Cancer,” pp. 1 Academic Press, London (1982).Google Scholar
  3. 3.
    G. L. Plaa and H. Whitshi, Chemicals, drugs and lipid peroxidation, Ann. Rev. Pharmacol. Tox. 16: 125 (1976).Google Scholar
  4. 4.
    M. T. Smith, H. Thor and S. Orrenius, The role of lipid peroxidation in the toxicity of foreign compounds to liver cells, Biochem. Pharmacol. 32: 763 (1983).PubMedGoogle Scholar
  5. 5.
    K. Yagi, ed., in: “Lipid Peroxides in Biology and Medicine,” p. 1 Academic Press, New York (1982).Google Scholar
  6. 6.
    J. S. Bus and J.E. Gibson, Lipid peroxidation and its role in toxicology, in: “Reviews in Biochemical Toxicology,” ed., E. Hodgson, J. R. Bend and R.N.. Philpot, North Holland, (1979).Google Scholar
  7. 7.
    M. A. Trush, E. G. Mimnaugh and T. E. Gram, Activation of pharmacologic agents to radical intermediates, Biochem. Pharmacol. 31: 3335 (1982).PubMedGoogle Scholar
  8. 8.
    M. K. Logani and R. E. Davies, Lipid oxidation: Biological effects and antioxidants, Lipids 15: 485 (1980).PubMedGoogle Scholar
  9. 9.
    E. N. Frankel, Lipid oxidation, Prog. Lipid Res. 19: 1 (1980).PubMedGoogle Scholar
  10. 10.
    T. F. Slater, Overview of methods used for detecting lipid peroxidation, in: “Methods in Enzymology,” Vol. 105, L. Packer, ed., Academic Press, New York (1984).Google Scholar
  11. 11.
    C. A. Riely, G. Cohen and M. Lieberman, Ethane evolution: a new index of lipid peroxidation, Science 183: 208 (1974).PubMedGoogle Scholar
  12. 12.
    C. J. Dillard and A. L. Tappel, Volatile hydrocarbon and carbonyl products of lipid peroxidation: a comparison of pentane, ethane, hexanal and acetone as in vivo indices, Lipids 14: 989 (1979).PubMedGoogle Scholar
  13. 13.
    C. J. Dillard, E. E. Dumelin and A. L. Tappel, Effect of dietary vitamin E on expiration of pentane and ethane by the rat, Lipids 12: 109 (1977).PubMedGoogle Scholar
  14. 14.
    D. G. Hafeman and W. G. Hoekstra, Protection against carbontetrachloride-induced lipid peroxidation in the rat by dietary vitamin E, selenium and methionine as measured by ethane evolution, J. Nutr. 107: 656 (1977).PubMedGoogle Scholar
  15. 15.
    C. J. Dillard, J. E. Downey and A. L. Tappel, Effect of antioxidants on lipid peroxidation in iron-loaded rats, Lipids 19: 127 (1984).PubMedGoogle Scholar
  16. 16.
    A. L. Tappel, Measurement of and protection from in vivo lipid peroxidation, in: “Free Radicals in Biology,” Vol.IV, W. A. Pryor, ed., Academic Press, New York (1980).Google Scholar
  17. 17.
    E. E. Dumelin and A. L. Tapel, Hydrocarbon gases produced during in vitro peroxidation of polyunsaturated fatty acids and decomposition of preformed hydroperoxides, Lipids 12: 894 (1977).PubMedGoogle Scholar
  18. 18.
    H. Frank, T. Hintze, D. Bimboes and H. Remmer, Monitoring lipid peroxidation by breath analysis: endogenous hydrocarbons and their metabolic elimination, Toxicol. Appl. Pharmacol. 56: 337 (1980).PubMedGoogle Scholar
  19. 19.
    G. D. Lawrence and G. Cohen, Ethane exhalation as an index of in vivo lipid peroxidation: concentrating ethane from a breath collection chamber, Anal. Biochem. 122: 283 (1982).PubMedGoogle Scholar
  20. 20.
    D. Gelmont, R. A. Stein and J. F. Mead, The bacterial origin of rat breath pentane, Biochem. Biophys. Res. Commun. 102: 932 (1981).PubMedGoogle Scholar
  21. 21.
    A. Muller and H. Sies, Role of alcohol dehydrogenase activity and of acetaldehyde in ethanol induced ethane and pentane production by isolated perfused rat liver, Biochem. J. 206: 153 (1982).PubMedGoogle Scholar
  22. 22.
    M. T. Smith, H. Thor, P. Hartzell and S. Orrenius, The measurement of lipid peroxidation in isolated hepatocytes, Biochem. Pharmacol. 31: 19 (1982).PubMedGoogle Scholar
  23. 23.
    R. Reiter and A. Wendel, Drug-induced lipid peroxidation in mice-IV. In vitro hydrocarbon evolution, reduction of oxygen and covalent binding of acetaminophen, Biochem. Pharmacol. 32:665 (1983).PubMedGoogle Scholar
  24. 24.
    H. H. Draper, L. Polensek, M. Hadley and L. G. McGirr, Urinary malondialdehyde as an indicator of lipid peroxidation in the diet and in the tissues, Lipids (in press) (1984).Google Scholar
  25. 25.
    G. M. Siu and H. H. Draper, Metabolism of malonaldehyde in vivo and in vitro, Lipids 17: 349 (1982).PubMedGoogle Scholar
  26. 26.
    R. A. Jordan and J. B. Schenkman, Relationship between malondialdehyde production and arachidonate consumption during NADPH supported microsomal lipid peroxidation, Biochem. Pharmacol. 31: 1393 (1982).PubMedGoogle Scholar
  27. 27.
    H. E. May and P. B. McCay, Reduced triphosphopyridine nucleotide oxidase-catalyzed alterations of membrane phospholipids, I. Nature of lipid alterations, J. Biol. Chem. 243: 2288 (1968).PubMedGoogle Scholar
  28. 28.
    H. E. May and P. B. McCay, Reduced triphosphopyridine nucleotide oxidase-catalyzed alterations of membrane phospholipids. II. Enzymic properties and stoichiometry, J. Biol. Chem. 243: 2296 (1968).PubMedGoogle Scholar
  29. 29.
    P. Hochstein and L. Ernster, ADP-activated lipid peroxidation coupled to the TPNH oxidase system of microsomes, Biochem. Biophys. Res. Commun. 12: 388 (1963).PubMedGoogle Scholar
  30. 30.
    R. K. Schneider, E. E. Smith and F. E. Hunter, Correlation of oxygen consumption with swelling and lipid peroxide formation when mitochondria are treated with the swelling-inducing agents Fe +2, glutathione, ascorbate or phosphate, Biochemistry 3: 147 (1964).Google Scholar
  31. 31.
    M. Hicks and J. M. Gebicki, A spectrophotometric method for the determination of lipid hydroperoxides, Anal. Biochem. 99: 249 (1979).PubMedGoogle Scholar
  32. 32.
    R. Cathcart, E. Schwiers and B. N. Ames, Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay, Anal. Biochem. 134: 111 (1983).PubMedGoogle Scholar
  33. 33.
    R. L. Heath and A. L. Tappel, A new sensitive assay for the measurement of hydroperoxides, Anal. Biochem. 76: 184 (1976).PubMedGoogle Scholar
  34. 34.
    T. Miura, J. Hiraizumi and M. Kimura, A micromethod for the fluorometric determination of lipid hydroperoxide by using glutathione peroxidase, J. Pharmacobio-Dyn. 3: 5 (1980).Google Scholar
  35. 35.
    R. O. Recknagel and A. K. Ghoshal, Lipoperoxidation as a vector in carbon tetrachloride hepatotoxicity, Lab. Invest. 15: 132 (1966).PubMedGoogle Scholar
  36. 36.
    R. O. Recknagel and A. K. Ghoshal, Quantitative estimation of peroxidative degeneration of rat liver microsomal and mitochondrial lipids after carbon tetrachloride poisoning, Exp. Mol. Pathol. 5: 413 (1966).Google Scholar
  37. 37.
    K. S. Rao and R. O. Reckangel, Early onset of lipoperoxidation in rat liver after carbon tetrachloride administration, Exp. Mol. Pathol. 9: 271 (1968).Google Scholar
  38. 38.
    R. L. Waller and R. O. Recknagel, Determination of lipid conjugated dienes with tetracyano-ethylene-14C: Significance for study of the pathology of lipid peroxidation, Lipids 12: 914 (1977).PubMedGoogle Scholar
  39. 39.
    F. Corongiu and A. Milia, An improved and simple method for determining diene conjugation in autoxidized polyunsaturated fatty acids, Chem. Biol. Interact. 44: 289 (1983).PubMedGoogle Scholar
  40. 40.
    C. L. Wood, A. J. Gandolfi and R. A. VanDyke, Lipid binding of a halothane metabolite. Relationship to lipid peroxidation in vitro, Drug Metab. Dispos. 4: 305 (1976).Google Scholar
  41. 41.
    M. J. Thomas and W. A. Pryor, Singlet oxygen oxidation of methyl linoleate: Isolation and characterization of the NaBH4-reduced products, Lipids 15: 544 (1980).Google Scholar
  42. 42.
    H. W. S. Chan and G. Levett, Autoxidation of methyl linoleate. Separation and analysis of isomeric mixtures of methyl linoleate hydroperoxides and methyl hydroxylinoleates, Lipids 12: 99 (1977).PubMedGoogle Scholar
  43. 43.
    H. Ohkawa, N. Ohishi and K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem. 95: 351 (1979).PubMedGoogle Scholar
  44. 44.
    T. Asakawa and S. Matsushita, Thiobarbituric acid test for detecting lipid peroxides, Lipids 14: 401 (1979).Google Scholar
  45. 45.
    R. O. Sinnhuber, I. C. Yu and Te. C. Yu, Characterization of the red pigment formed in the 2-thiobarbituric acid determination of oxidative rancidity, Food Res. 23: 620 (1958).Google Scholar
  46. 46.
    J. M. C. Gutteridge and T. R. Tickner, The characterization of thiobarbituric acid reactivity in human plasma and urine, Anal. Biochem. 91: 250 (1978).PubMedGoogle Scholar
  47. 47.
    R. P. Bird, S. S. O. Hung, M. Hadley and H. H. Draper, Determination of malonaldehyde in biological materials by high pressure liquid chromatography, Anal. Biochem. 128:240 (1983)Google Scholar
  48. 48.
    J. M. C. Gutteridge, J. Stocks and T. L. Dormandy, Thiobarbituric acid-reacting substances derived from auto-oxidizing linoleic and linolenic acids, Anal. Chim. Acta 70: 107 (1974).PubMedGoogle Scholar
  49. 49.
    H. Buttkus and A. J. Rose, Amine-malonaldehyde condensation products and their relative color contribution in the thiobarbituric acid test, J. Am. Oil Chem. Soc. 49: 440 (1972).Google Scholar
  50. 50.
    L. Poyer and P. B. McCay, Reduced triphosphopyridine nucleotide oxidase-catalyzed alterations of membrane phospholipids. IV. Dependence on Fe+3, J. Biol. Chem. 246: 263 (1971).PubMedGoogle Scholar
  51. 51.
    H. Esterbauer and T. F. Slater, The quantitative estimation by high performance liquid chromatography of free malonaldehyde produced by peroxidizing microsomes, I.R.C.S. Med. Sci. 9: 749 (1981).Google Scholar
  52. 52.
    J. M. C. Gutteridge, Identification of malondialdehyde as the TBA-reactant formed by bleomycin-iron free radical damage to DNA, FEBS. Lett. 105: 278 (1979).PubMedGoogle Scholar
  53. 53.
    M. Hamberg and B. Samuelsson, Oxygenation of unsaturated fatty acids by the vesicular gland of sheep, J. Biol. Chem. 242: 5344 (1967).PubMedGoogle Scholar
  54. 54.
    H. Esterbauer, K. H. Cheeseman, M. U. Dianzani, G. Poli and T. F. Slater, Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe+2 in rat liver microsomes, Biochem. J. 208: 129 (1982).PubMedGoogle Scholar
  55. 55.
    C. J. Dillard and A. L. Tappel, Fluorescent products of lipid peroxidation of mitochondria and microsomes, Lipids 6: 715 (1971).PubMedGoogle Scholar
  56. 56.
    C. J. Dillard and A. L. Tappel, Fluorescent products from reaction of peroxidizing polyunsaturated fatty acids with phosphatidylethanolamine and phenylalanine, Lipids 8: 183 (1973).PubMedGoogle Scholar
  57. 57.
    K. S. Chio and A. L. Tappel, Inactivation of ribonuclease and other enzymes by peroxidizing lipids and malonaldehyde, Biochemistry 8: 2827 (1969).PubMedGoogle Scholar
  58. 58.
    K. S. Chio and A. L. Tappel, Synthesis and characterization of the fluorescent products derived from malonaldehyde and amino acids, Biochemistry 8: 2821 (1969).PubMedGoogle Scholar
  59. 59.
    K. Kikugawa, Y. Machida, M. Kida and T. Kurechi, Studies on peroxidized lipids. III. Fluorescent pigments derived from reaction of malonaldehyde and amino acids, Chem. Pharm. Bull. 29: 3003 (1981).Google Scholar
  60. 60.
    K. Kikugawa, S. Watanabe and T. Kurechi, Studies on peroxidized lipids: Fluorescent products derived from the reaction of unsaturated fatty acids and methylamine, Chem. Pharm. Bull. 32: 638 (1984).Google Scholar
  61. 61.
    H. Esterbauer, Aldehydic products of lipid peroxidation, in: “Free Radicals, Lipid Peroxidation and Cancer,” D. C. McBrien and T. F. Slater, ed., Academic Press, London (1982).Google Scholar
  62. 62.
    E. N. Frankel, W. E. Neff and E. Selke, Analysis of autoxidized fats by gas chromatography-mass spectrometry: VII. Volatile thermal decomposition products of pure hydro-peroxides from autoxidized and photosensitized oxidized methyl oleate, linoleate and linolenate, Lipids 16: 279 (1981).Google Scholar
  63. 63.
    T. W. Kwon and B. M. Watts, Malonaldehyde in aqueous solution and its role as a measure of lipid oxidation in foods, J. Food Sci. 29: 294 (1964).Google Scholar
  64. 64.
    H. Hughes, C. V. Smith, E. C. Horning and J. R. Mitchell, High-performance liquid chromatography and gas chromatography-mass spectrometry determination of specific lipid peroxidation products in vivo, Anal. Biochem. 130: 431 (1983).PubMedGoogle Scholar
  65. 65.
    W. C. Hubbard and D. F. Taber, Analysis of hydroxy acids, in: “Leukotrienes and Prostacyclin,” F. Bertii, G. Folio, and G. P. Velo, ed., Plenum Press, New York (1981).Google Scholar
  66. 66.
    J. Capdevilla, L. J. Marnett, N. Chacos, R. A. Prough and R. W. Estabrook, Cytochrome P450 dependent oxygenation of arachidonic acid to hydroxyicosatetraenoic acids, Proc. Natl. Acad. Sci. U.S.A. 79: 767 (1982).Google Scholar
  67. 67.
    P. B. McCay, E. K. Lai, J. E. Poyer, C. M. Dubose and E. G. Janzen, Oxygen and carbon centered.. free radical formation during carbon tetrachloride metabolism, J. Biol. Chem. 259: 2135 (1984).PubMedGoogle Scholar
  68. 68.
    J. J. M. C. DeGroot, G. J. Garssen, J. F. G. Vliegenthart and J. Boldingh, The detection of linoleic acid radicals in the anaerobic reaction of lipoxygenase, Biochem. Biophys. Acta. 326: 276 (1973).Google Scholar
  69. 69.
    E. Cadenas, A. Boveris and B. Chance, Low-Level chemiluminescence in biological systems, in: “Free Radicals in Biology,” Vol. IV, W. A. Pryor, ed., Academic Press, New York (1984).Google Scholar
  70. 70.
    Yu. A. Vladimorov, V. I. Olenev, T. B. Suslova and Z. P. Cheremisina, Lipid peroxidation in mitochondrial membrane, Adv. Livid Res. 17: 173 (1980).Google Scholar
  71. 71.
    J. R. Wright, R. C. Rumbaugh, H. D. Colby and P. R. Miles, The relationship between chemiluminescence and lipid peroxidation in rat liver microsomes, Arch. Biochem. Biophys. 192: 344 (1979).PubMedGoogle Scholar
  72. 72.
    N. R. DiLuzio and T. E. Stege, Enhanced hepatic chemiluminescence following carbon tetrachloride or hydrazine administration, Life Sci. 21: 1457 (1977).Google Scholar
  73. 73.
    F. Hawco, C. R. O’Brien and P. J. O’Brien, Singlet oxygen production during hemoprotein catalyzed lipid peroxide decomposition, Biochem. Biophys. Res. Comm. 76: 354 (1973).Google Scholar
  74. 74.
    J. F. G. Vliegenthart and G. A. Veldink, Lipoxygenases, in: “Free Radicals in Biology,” Vol. V, W. A. Pryor, ed., Academic Press, New York (1982).Google Scholar
  75. 75.
    S. D. Aust and B. A. Svingen, The role of iron in enzymatic lipid peroxidation, in: “Free Radicals in Biology,” Vol. V, W. A. Pryor, ed., Academic Press, New York (1982).Google Scholar
  76. 76.
    F. Ursin, N. Maiorino, L. Ferri, N. Valente and C. Gregolin, Hydrogen peroxide and hematin in microsomal lipid peroxidation, J. Inorg. Biochem. 15: 163 (1981).Google Scholar
  77. 77.
    P. J. O’Brien and A. D. Rahimtula, Involvement of cytochrome P-450 in the intracellular formation of lipid peroxides, J. Agric. Food Chem. 23: 154 (1975).PubMedGoogle Scholar
  78. 78.
    J. M. C. Gutteridge, Lipid peroxidation initiated by superoxide dependent hydroxyl radicals using complexed iron and hydrogen peroxide, FEBS Lett. 172: 245 (1984).PubMedGoogle Scholar
  79. 79.
    A. Ding and P.C. Chan, Singlet oxygen in copper catalyzed lipid peroxidation in erythrocyte membranes, Lipids 191: 278 (1984).Google Scholar
  80. 80.
    J. Silva and P.J. O’Brien, Benzoyl peroxide catalyzed membrane lipid peroxidation (submitted for publication).Google Scholar
  81. 81.
    A. Rahimtula, F. J. Hawco and P. J. O’Brien, The photodynamic inactivation of mixed function oxidase and peroxidation of membrane lipids, Photochem. Photobiol. 28: 811 (1978).PubMedGoogle Scholar
  82. 82.
    L. G. Forni, J. E. Packer, T. F. Slater and R. L. Willson, Reaction of the trichloromethyl and halothane-derived peroxy radicals with unsaturated fatty acids: a pulse radiolysis study, Chem. Biol. Interact. 45: 171 (1983).PubMedGoogle Scholar
  83. 83.
    M. Tien, B. A. Svingen and S. D. Aust, An investigation into the role of hydroxyl radical in xanthine oxidase dependent lipid peroxidation, Arch. Biochem. Biophys. 216: 142 (1982).PubMedGoogle Scholar
  84. 84.
    B. Halliwell and J. M. C. Gutteridge, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem. J. 219: 1 (1984).PubMedGoogle Scholar
  85. 85.
    J. R. Bucher, M. Tien and S. D. Aust. The requirement for ferric ions in the initiation of lipid peroxidation by chelated ferrous ion, Biochem. Biophys. Res. Comm. 111: 777 (1983).PubMedGoogle Scholar
  86. 86.
    L. A. Morehouse, C. E. Thomas and S. D. Aust, Superoxide generation by NADPH-cytochrome P450 reductase: the effect of iron chelators and the role of superoxide in microsomal lipid peroxidation, Arch. Biochem. Biophys. 232: 366 (1984).PubMedGoogle Scholar
  87. 87.
    P. C. Chan, O. G. Peller and L. Kesner, Copper (II)-catalyzed lipid peroxidation in liposomes and erythrocyte membranes, Lipids 17:331 (1982)Google Scholar
  88. 88.
    M. Tien, L. A. Morehouse, J. R. Bucher and S. D. Aust, The multiple effects of ethylene diaminetetraacetate in several model lipid peroxidation systems, Arch. Biochem. Biophys. 218: 450 (1982).PubMedGoogle Scholar
  89. 89.
    S. E. Fridovich and N. A. Porter, Oxidation of arachidonic acid in micelles by superoxide and H2O2, J. Biol. Chem. 256: 260 (1981).PubMedGoogle Scholar
  90. 90.
    E. G. Mimnaugh, A. H. Siddik, R. Drew, B. I. Sikic and T. E. Gram, The effects of tocopherol on the toxicity, disposition and metabolism of adriamycin in mice, Toxic. Appl. Therap. 49:119 (1979).Google Scholar
  91. 91.
    J. H. Doroshow, G. Y. Locker, J. Ifrim and C. E. Myers, Prevention of doxorubicin cardiac toxicity in the mouse by N-acetylcysteine, J. Clin. Invest. 68: 1053 (1981).PubMedGoogle Scholar
  92. 92.
    E. Herman, B. Ardalan, C. Rier, V. Waravdekar and S. Krof, Reduction of daunorubicin lethality and myocardial cellular alterations by pretreatment with ICRF-187 in Syrian hamsters, Cancer Treat. Rep. 63: 89 (1979).PubMedGoogle Scholar
  93. 93.
    H. Kappus, H. Muliawan and M. E. Schenlen, in: “Mechanisms of Toxicity and Hazard Evaluation”, B. Holmstedt, R. Lauwerys, M. Mercier and M. Roberfroid, ed., Elsevier/North Holland Biomedical Press, New York (1980).Google Scholar
  94. 94.
    J. Goodman and P. Hochstein, Generation of free radicals and lipid peroxidation by redox cycling of adriamycin and daunomycin, Biochem. Biophys. Res. Comm. 76: 705 (1977).Google Scholar
  95. 95.
    E. G. Mimnaugh, M. A. Trush and T. E. Gram, Stimulation by adriamycin of rat heart and liver microsomal NADPHdependent lipid peroxidation, Biochem. Pharmacol. 30: 2797 (1981).PubMedGoogle Scholar
  96. 96.
    H. Muliawan, M. E. Scheulen and H. Kappus, Adriamycin stimulates only the iron ion induced, NADPH-dependent microsomal alkane formation, Biochem. Pharmacol. 31: 3147 (1982).PubMedGoogle Scholar
  97. 97.
    J. M. C. Gutteridge, Adriamycin-iron catalyzed phospholipid peroxidation: a reaction not involving reduced adriamycin or hydroxyl radicals, Biochem. Pharmacol. 32: 1949 (1983).PubMedGoogle Scholar
  98. 98.
    K. Sugioka and M. Nakano, Mechanism of phospholipid peroxidation induced by ferric ion-ADP-adriamycin coordination complex, Biochim. Biophys. Acta 713: 333 (1982).PubMedGoogle Scholar
  99. 99.
    J. M. C. Gutteridge, Lipid peroxidation and possible hydroxyl radical formation stimulated by the self-reduction of a doxorubicin-iron (III) complex, Biochem. Pharmacol. 33: 1725 (1984).PubMedGoogle Scholar
  100. 100.
    C. E. Myers, L. Gianni, C. B. Simone, R. Klecker and R. Green, Oxidative destruction of erythrocyte ghost membranes catalyzed by the doxorubicin-iron complex, Biochemistry 21: 1707 (1982).PubMedGoogle Scholar
  101. 101.
    J. R. F. Muindi, B. K. Sinha, L. Gianni and C. E. Myers, Hydroxyl radical production and DNA damage induced by anthracycline-iron complex, FEBS Lett. 172: 226 (1984).PubMedGoogle Scholar
  102. 102.
    E. J. Demant, Binding of adriamycin-Fei+ complex to membrane phospholipids, Europ. J. Biochem. 142: 571 (1984).PubMedGoogle Scholar
  103. 103.
    H. Eliot, L. Gianni and C. Myers, Oxidative destruction of DNA by the adriamycin-iron complex, Biochemistry 23:928 (1984)Google Scholar
  104. 104.
    M. A. Trush, E. G. Mimnaugh, E. Ginsburg and T. E. Gram, Studies on the in vitro interaction of mitomycin c, nitrofurantoin and paraquat with pulmonary microsomes, Biol. Pharmacol. 31: 805 (1982).Google Scholar
  105. 105.
    J. M. C. Gutteridge and F. Xiao-Chang, Enhancement of bleomycin-iron free radical damage to DNA by antioxidants and their inhibition of lipid peroxidation, FEBS Lett. 123: 71 (1981).PubMedGoogle Scholar
  106. 106.
    W. M. Tom and M. R. Montgomery, Bleomycin toxicity. Alterations in oxidative metabolism in lung and liver microsomal fractions, Biochem. Pharmacol. 29:3239 (1980).Google Scholar
  107. 107.
    T. Komiyama, T. Kikuchi and Y. Sugiura, Generation of hydroxyl radical by anticancer quinone drugs in the presence of NADPH-cytochrome P-450 reductase, Biochem. Pharmacol. 31: 3651 (1978).Google Scholar
  108. 108.
    J. W. Lown and H. H. Chen, Evidence for the generation of free hydroxyl radicals from certain quinone antitumor antibiotics upon reductive activation in solutions, Can. J. Chem. 59: 390 (1981).Google Scholar
  109. 109.
    L. W. Oberley and G. R. Buettner, The production of hydroxyl radical by bleomycin and iron (II), FEBS Lett. 97: 47 (1979).Google Scholar
  110. 110.
    Y. Suguira and T. Kikuchi, Formation of superoxide and hydroxy radicals in iron (II)-bleomycin-oxygen system: electron spin resonance detection by spin trapping, J. Antibiotics 31: 1310 (1978).Google Scholar
  111. 111.
    Y. Suguira, The production of hydroxyl radical from copper (I) complex systems of bleomycin and tallysomycin: comparison with copper (II) and iron (II) systems, Biochem. Biophys. Res. Comm. 90: 375 (1979).Google Scholar
  112. 112.
    G. Cohen and A. I. Cederbaum, Microsomal metabolism of hydroxyl radical scavenging agents: relationship to the microsomal oxidation of alcohols, Arch. Biochem. Biophys. 199: 438 (1980).PubMedGoogle Scholar
  113. 113.
    C. C. Winterbourn, Evidence for the production of hydroxyl radicals from the adriamycin semiquinone and H2O2, FEBS Lett. 136: 89 (1981).Google Scholar
  114. 114.
    D. A. Bates and C. C. Winterbourn, Deoxyribose breakdown by the adriamycin semiquinone and H2O2: evidence for hydroxyl radical participation, FEBS Lett. 145: 137 (1982).PubMedGoogle Scholar
  115. 115.
    H. Noll and W. Jordan, Hydroxyl radical generation by adriamycin semiquinone and H2O2: an explanation for the cardiotoxicity of anthracycline antibiotics, Biochem. Biophys. Res. Comm. 114: 197 (1983).Google Scholar
  116. 116.
    E. Paur, R. J. Youngman, E. Lengfelder and E. F. Elstner, Mechanisms of adriamycin-dependent oxygen activation catalyzed by NADPH-cytochrome c-oxidoreductase, Z. Naturforsch 396: 261 (1984).Google Scholar
  117. 117.
    G. W. Winston, D. E. Feierman and A. I. Cederbaum, The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase, Arch. Biochem. Biophys. 232: 378 (1984).PubMedGoogle Scholar
  118. 118.
    I. Johansson and M. Ingelman-Sundberg, Hydroxyl radical-mediated, cytochrome P-450 dependent metabolic activation of benzene in microsomes and reconstituted enzyme systems from rabbit liver, J. Biol. Chem. 258: 7311 (1983).PubMedGoogle Scholar
  119. 119.
    E. G. Hrycay and P. J. O’Brien, The peroxidase nature of cytochrome P-450 utilizing a lipid peroxide substrate, Arch. Biochem. Biophys. 147: 28 (1971).PubMedGoogle Scholar
  120. 120.
    W. A. Pryor and L. W. Lightsey, Mechanisms of nitrogen dioxide reactions: Initiation of lipid peroxidation and the production of nitrous acid, Science 214: 435 (1981).PubMedGoogle Scholar
  121. 121.
    J. Kanner and J. C. Kinsella, Initiation of lipid peroxidation by a peroxidase/hydrogen peroxide/halide system, Lipids 18: 204 (1983).PubMedGoogle Scholar
  122. 122.
    B. H. Bielski, R. L. Arudi and M. W. Sutherland, A study of the reactivity of HO2/O2 with unsaturated fatty acids. J. Biol Chem. 258: 4759 (1983).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Larry G. McGirr
    • 1
  • Peter J. O’Brien
    • 1
  1. 1.Department of BiochemistryMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations