Advertisement

Fast Membrane Transformation in a Flashing Endoplasmic Reticulum

  • Jean-Marie Bassot
Part of the NATO ASI Series book series (NSSA, volume 91)

Abstract

Action potentials are known to propagate along plasma membranes, in axons as well as conducting epithelia1. Synaptic transmission or electrical coupling via gap junctions allows cell to cell communication2,3. Nevertheless, in the muscle system, the existence of dyad junctions coupling the transverse tubules of the plasma membrane with terminal saccules of the sarcoplasmic reticulum indicates that intracellular membrane pathways can also carry a fast signal.

Keywords

Sarcoplasmic Reticulum Outer Ring Repetitive Stimulation Typical Emission Septate Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.A.V. Anderson, Epithelial conduction: its properties and functions, Progress in Neurobiol., 15: 161–203 (1980).CrossRefGoogle Scholar
  2. 2.
    L.A. Staehelin, Structure and function of intercellular junctions, Int. Rev. Cytol., 39: 191–283 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    M. Pavans de Ceccatty, “Communications et interactions cellulaires”, Presses Universit. France, Paris (1983).Google Scholar
  4. 4.
    B.M. Sweeney, Intracellular sources of bioluminescence, Int. Rev. Cytol. 68: 173–195 (1980).CrossRefGoogle Scholar
  5. 5.
    E.N. Harvey, “Bioluminescence”, Acad. Press, New York (1952).Google Scholar
  6. 6.
    J.M. Bassot, On the comparative morphology of some luminous organs, in:“Bioluminescence in Progress”, F.H. Johnson and Y. Haneda ed. Princeton Univ. Press, Princeton (1966).Google Scholar
  7. 7.
    J. Buck, Functions and evolutions of bioluminescence, in: “Bioluminescence in action”, P. Herring ed. Acad. Press (1977).Google Scholar
  8. 8.
    J.W. Hastings, Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems, J. Mol. Evol. 19: 309–321 (1983).CrossRefGoogle Scholar
  9. 9.
    J.A.C. Nicol, Luminescence in Polynoid worms, J. Mar. Biol. Ass U.K., 32: 65–84 (1953).CrossRefGoogle Scholar
  10. 10.
    J.A.C. Nicol, Luminescence in Polynoids: II. Different mode of response in the elytra, J. Mar. Biol. Ass. U.K., 36: 261–269 (1957).CrossRefGoogle Scholar
  11. 11.
    M. Pavans de Ceccatty, J.M. Bassot, A. Bilbaut and M.T. Nicolas, Bioluminescence des élytres d’Acholoe. I. Morphologie des supports structuraux, Biol. cellulaire, 28: 57–64 (1977).Google Scholar
  12. 12.
    J.M. Bassot, Données histochimiques et histologiques sur l’organe lumineux des élytres d’Annelides Polynoinae, Cah. Biol. Mar., 7: 39–52 (1966).Google Scholar
  13. 13.
    J.M. Bassot and A. Bilbaut, Bioluminescence des élytres d’Acholoe, IV. Luminescence et fluorescence des photosomes, Biol. Cellulaire, 28: 163–168 (1977).Google Scholar
  14. 14.
    J.M. Bassot, Une forme microtubulaire et paracristalline de reticulum endoplasmique dans les photocytes des Annelides Polynoiae, J. Cell. Biol., 31: 135–158 (1966).PubMedCrossRefGoogle Scholar
  15. 15.
    M.T. Nicolas, Etude des structures et des mécanismes de la bioluminescence des Annélides Polynoinae, Thèse, Univ. Paris Sud (1982).Google Scholar
  16. 16.
    J.M. Bassot and M.T. Nicolas, Similar paracrystals of endoplasmic reticulum in the photoemitters and the photoreceptors of scale-worms, Experientia 34: 726: 728 (1978).Google Scholar
  17. 17.
    M.J. Cavey, Multilaminar aggregates of sarcoplasmic reticulum in caudal muscle cells of an ascidian larva, Canad. J. Zool., 58: 538–542 (1980).Google Scholar
  18. 18.
    M.J. Cavey, Coextensive sarcoplasmic reticulum in larval muscle cells of a didemnid ascidian, Diplosoma macdonaldi. Canad. J. Zool., 61: 732–736 (1983).CrossRefGoogle Scholar
  19. 19.
    M.T. Nicolas, Bioluminescence des élytres d’Acholoe, V. Les principales étapes de la régénération, Arch. Zool. exp. gen., 118: 103–120 (1977).Google Scholar
  20. 20.
    A. Bilbaut and J.M. Bassot, Bioluminescence des élytres d’Acholoe, II. Données photométriques, Biol. Cell., 28: 154–154 (1977).Google Scholar
  21. 21.
    J.M. Bassot, sites actifs et facilitation dans trois systèmes bioluminescents, Arch. Zool. exp. gen., 120, 5–24 (1979).Google Scholar
  22. 22.
    J.M. Bassot, Intracellular recruitment during facilitation of bioluminescent emission, in the scale-worm system. Its characteristics of elementary memory and anticipation. J. Cell Biol., in preparation.Google Scholar
  23. 23.
    J.A.C. Nicol, Spectral composition of the light of polynoid worms, J. mar. biol. Ass. U.K., 36: 529–538 (1957).CrossRefGoogle Scholar
  24. 24.
    B. Lecuyer and B. Arrio, Some spectral characteristics of the light emitting system of the polynoid worms, Photochem. Photobiol., 22: 213–215 (1975).CrossRefGoogle Scholar
  25. 25.
    J.M. Bassot and A. Bilbaut, Bioluminescence des élytres d’Acholoe, III. Déplacement des sites d’origine au cours des émissions. Biol. Cell., 28: 155–162 (1977).Google Scholar
  26. 26.
    J.M. Bassot, C. Nicolas and J. Escaig, Rapid structural coupling of endoplasmic reticulum with plasma membrane in the bioluminescent system of scale-worms, as revealed by quick freeze fixation. J. gen. Physiol., in preparation.Google Scholar
  27. 27.
    A.A. Herrera, The physiology of bioluminescence in polynoid polychaete worms., Thesis, U.C.L.A. (1977).Google Scholar
  28. 28.
    M.T. Nicolas, Présence de photosomes dans les fractions lumineuses du système élytral des Polynoinae (Annelides polychètes). C.R. Acad. Sci. Paris, 289: 177–180 (1979).Google Scholar
  29. 29.
    M.T. Nicolas, J.M. Bassot and O. Shimomura, Caractérisation d’une photoprotéine nouvelle dans le système bioluminescent des Annélides Polynoinae, C.R. Acad. Sci. Paris, 293: 777–780 (1981).Google Scholar
  30. 30.
    M.T. Nicolas, J.M. Bassot and O. Shimomura, Polynoidin: a membrane photoprotein isolated from the bioluminescent system of scale-worms, Photochem. Photobiol. 35: 201–207 (1982).CrossRefGoogle Scholar
  31. 31.
    C. Fresneau, B. Arrio, B. Lecuyer, A. Dupaix, N. Lescure and P. Volfin, The fluorescent product of the scale-worm bioluminescent reaction: an in vitro study, Photochem. Photobiol. 22: 213–215 (1984).Google Scholar
  32. 32.
    M. Pavans de Ceccatty, A. Bilbaut and J.M. Bassot, Correlation entre les signaux électriques spontanés, la motricité et la luminescence chez Acholoe astericola Delle Ch. C.R. Acad. Sci. Paris, 275: 2523–2526 (1972).Google Scholar
  33. 33.
    M.T. Nicolas, M. Moreau and P. Guerrier, Indirect nervous control of luminescence in the polynoid worm Harmothoe lunulata, J. exp. Zool., 206: 427–433 (1978).CrossRefGoogle Scholar
  34. 34.
    A.A. Herrera, Electrophysiology of bioluminescent excitable epithelial cells is a polynoid polychaete worm. J. comp. Physiol. 129:67–75 (1979).CrossRefGoogle Scholar
  35. 35.
    A. Bilbaut, Cell junctions in the excitable epithelium of bioluminescent scales on a polynoid worm: a freeze fracture and electrophysiological study, J. Cell. Sci. 41: 341–368 (1980).PubMedGoogle Scholar
  36. 36.
    A. Bilbaut, Excitable epithelial cells in the bioluminescent scales of a polynoid worm; effects of various ions on the action potentials and on the excitation-luminescence coupling. J. exp. Biol., 88: 219–238 (1980).Google Scholar
  37. 37.
    M. Pavans de Ceccaty, J.M. Bassot and A. Bilbaut and M.T. Nicolas, Genèse des paracristaux photogènes et leurs structures d’excitation dans les cellules de l’élytre d’Acholoe astericola Delle Ch. C.R. Acad. Sci. Paris, 275: 2363–2366 (1972).Google Scholar
  38. 38.
    A. Van Harveld and J. Crowell, Electron microscopy after rapid freezing on a metal surface and substitution fixation., Anat. Record, 149: 381–386 (1964).Google Scholar
  39. 39.
    J.E. Heuser, T.S. Reese and D.M.D. Landis, Preservation of synaptic structure by rapid freezing, Cold Spring Harb. Symp. Quant. Biol., 40: 17–24 (1976).CrossRefGoogle Scholar
  40. 40.
    J.E. Heuser, T.S. Reese, M.J. Dennis, Y. Jean, L. Jean and L. Evans, Synaptic vesicle excocytosis captured by quick freezing and correlated with quantal transmitter release, J. Cell Biol., 81: 275–300 (1979).PubMedCrossRefGoogle Scholar
  41. 41.
    J. Escaig, G. Geraud and G. Nicolas, Congélation rapide des tissus biologiques. Mesure des températures et des vitesses de congélation par thermocouple en couche mince. C.R. Acad. Sci. Paris, 284: 2289–2292 (1977).Google Scholar
  42. 42.
    J. Escaig, New instruments which facilitate rapid freezing at 83 K and 6 K. Microscopie, 126: 221–229 (1982).CrossRefGoogle Scholar
  43. 43.
    J.R. Sommer, N.R. Wallace and J. Junker, The intermediate cisterna of the sarcoplasmic reticulum of skeletal muscle. J. Ultrastr. Res. 74: 126–142 (1980).CrossRefGoogle Scholar
  44. 44.
    A.V. Somlyo, Bridging structures spanning the junctional gap at the triad of skeletal muscle. J. Cell Biol., 80: 743–750 (1979).PubMedCrossRefGoogle Scholar
  45. 45.
    A. Saito, S. Seiler, A. Chu and S. Fleischer, Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J. Cell Biol., 99: 875–885 (1984).PubMedCrossRefGoogle Scholar
  46. 46.
    A.H. Caswell and J.P. Brunschwig, Identification and extraction of proteins that compose the triad junction of skeletal muscle. J. Cell Biol., 99: 929–939 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Jean-Marie Bassot
    • 1
  1. 1.Laboratoire de BioluminescenceC.N.R.S.Gif sur YvetteFrance

Personalised recommendations