Advertisement

Specific Properties of Higher Plant Mitochondria

  • Roland Douce
  • Richard Bligny
  • Etienne-Pascal Journet
  • Michel Neuberger
Part of the NATO ASI Series book series (NSSA, volume 91)

Abstract

One of the major functions of mitochondria from all organisms is to provide ATP as the principal energy source for the cell. This is true also of plant mitochondria and it is therefore no surprise that many basic features of mitochondrial membranes have been conserved between animals and plants despite a billion years of divergent evolution. Thus the morphology of plant mitochondria closely resembles that of their animal counterparts, as do their cyt chain, ATPase complex, energy conservation (H+ ejection) mechanisms and membrane phospholipid composition (Douce, 1985). Presumably these basic features of mitochondrial membranes are essential for their functioning in energy transduction.

Keywords

Mitochondrial Genome NADH Dehydrogenase Malic Enzyme Plant Mitochondrion Intact Mitochondrion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bendall, D.S., and Bonner, W.D., Jr., 1971, Cyanide-insensitive respiration in plant mitochondria, Plant Physiol., 47:236.PubMedCrossRefGoogle Scholar
  2. Bergman, A., Gardeström, P., and Ericson, I., 1980, Method to obtain a chlorophyll-free preparation of intact mitochondria from spinach leaves, Plant Physiol., 66:442.PubMedCrossRefGoogle Scholar
  3. Bonner, W.D., 1967, A general method for the preparation of plant mitochondria, Methods Enzymol. 10:126.CrossRefGoogle Scholar
  4. Day, D.A., and Wiskich, J.T., 1984, Transport processes of isolated plant mitochondria, Physiol. Vég., 22:241.Google Scholar
  5. Day, D.A., Arron, G.P., and Laties, G.G., 1980, “Nature and control of respiratory pathways in plants: the interaction of cyanide-resistant respiration with the cyanide-sensitive pathway” in: “The Biochemistry of Plants, Vol. 2, Metabolism and Respi- ration,” D.D. Davies, ed. Academic Press, New York.Google Scholar
  6. Douce, R., 1985, Mitochondria in higher plant cells: Structure. function and Biogenesis, Academic Press, New-York.Google Scholar
  7. Douce, R., and Bonner, W.D., Jr., 1972, Oxaloacetate control of Krebs cycle oxidations in purified plant mitochondria, Biochem. Biophys. Res. Commun., 47:619.CrossRefGoogle Scholar
  8. Douce, R., and Joyard, J., 1979, Structure and function of the plastid envelope, Adv. Bot. Res., 7:1.CrossRefGoogle Scholar
  9. Douce, R., Christensen, E.L., and Bonner, W.D., 1972, Preparation of intact plant mitochondria, Biochim. Biophys. Acta, 275:148.Google Scholar
  10. Douce, R., Mannella, C.A., and Bonner, W.D., Jr., 1973, The external NADH dehydrogenases of intact plant mitochondria, Biochim. Biophys. Acta, 292:105.Google Scholar
  11. Jackson, C., Dench, D.E., Hall, D.O., and Moore, A.L., 1979, Separation of mitochondria from contaminating subcellular structures utilizing silica sol gradient centrifugation, Plant Physiol., 64:150.PubMedCrossRefGoogle Scholar
  12. Henry, M.F., and Nyns, E.J., 1975, Cyanide-insensitive respiration. An alternative mitochondrial pathway, Sub. Cell. Biochem., 4:1.Google Scholar
  13. Huq, S., and Palmer, J.M., 1978, Oxidation of durohydroquinone via the cyanide-insensitive respiratory pathway in higher plant mitochondria, FEBS Lett., 92:317.CrossRefGoogle Scholar
  14. Koeppe, D.E., and Miller, R.J., 1972, Oxidation of reduced nicotinamide adenine dinucleotide phosphate by isolated corn mitochondria, Plant Physiol., 49:353.PubMedCrossRefGoogle Scholar
  15. Leaver, C.J., and Gray, M.W., 1982, Mitochondrial genome organization and expression in higher plant, Ann. Rev. Plant Physiol., 33:373.CrossRefGoogle Scholar
  16. Lehninger, A.L., 1964, “The mitochondrion”, Benjamin, New-York.Google Scholar
  17. Lloyd, D., 1974, “The mitochondria of microorganisms”, Academic Press, London.Google Scholar
  18. Lonsdale, D.M., 1984, A review of the structure and organization of the mitochondrial genome of higher plants, Plant molecular Biology, in press.Google Scholar
  19. Loomis, W.D., and Battaile, J., 1966, Plant phenolic compounds and the isolation of plant enzymes, Phytochemistry, 5:423.CrossRefGoogle Scholar
  20. Macrae, A.R., 1971, Effect of pH on the oxidation of malate by isolated cauliflower bud mitochondria, Phytochemistry, 10:1453.CrossRefGoogle Scholar
  21. Macrae, A.R., and Moorhouse, R., 1970, The oxidation of malate by mitochondria isolated from cauliflower buds, Eur. J. Biochem., 16:96.PubMedCrossRefGoogle Scholar
  22. Meeuse, B.J.D., 1975, Thermogenic respiration in aroids, Annu. Rev. Plant Physiol., 26:117.CrossRefGoogle Scholar
  23. Miller, I.M., and Palmer, J.M., 1982, Direct evidence for the presence of a rotenone resistant NADH dehydrogenase on the inner surface of the inner membrane of plant mitochondria, Physiol Plant., 54:267.CrossRefGoogle Scholar
  24. Neuburger, M., and Douce, R., 1980, Effect of bicarbonate and oxaloacetate on malate oxidation by spinach leaf mitochondria, Biochim. Biophys. Acta, 589:176.Google Scholar
  25. Neuburger, M., and Douce, R., 1983, Slow passive diffusion of NAD+ batween intact isolated plant mitochondria and suspending medium, Biochem. J., 216:443.PubMedGoogle Scholar
  26. Neuburger, M., Journet, E.P., Bligny, R., Carde, J.P., and Douce, R., 1982, Purification of plant mitochondria by isopycnic centrifugation in density gradients of Percoll, Arch. Biochem. Biophys., 217:312.Google Scholar
  27. Nishimura, M., Graham, T., and Akazawa, T., 1976, Isolation of intact chloroplasts and other cell organelles from spinach protoplasts, Plant Physiol., 58:309.PubMedCrossRefGoogle Scholar
  28. Nishimura, M., Douce, R., and Akazawa, T., 1982, Isolation and characterization of metabolically competent mitochondria from spinach leaf protoplasts, Plant Physiol., 69:916.PubMedCrossRefGoogle Scholar
  29. Palmer, J.M., 1976, The organization and regulation of electron transport in plant mitochondria, Ann. Rev. Plant Physiol., 27:133.CrossRefGoogle Scholar
  30. Palmer, J.D., and Thompson, W.F., 1982, Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost, Cell, 29:537.PubMedCrossRefGoogle Scholar
  31. Palmer, J.D., and Shields, C.R., 1984, Triparticle structure of the Ma6&Lca campezt mitochondrial genome, Nature, 307:437.CrossRefGoogle Scholar
  32. Pertoft, H., and Laurent, T.C., 1977 “Isopycnic separation of cells and cell organelles by centrifugation in modified colloidal silica gradients”, in: “Methods of cell separation, N. Catsimpoolas, ed., Plenum, New-York.Google Scholar
  33. Quetier, F., and Vedel, F., 1977, Heterogeneous population of mito- chondrial DNA molecules in higher plants, Nature, 268:365.CrossRefGoogle Scholar
  34. Rich, P.R., 1978, Quinol oxidation in Ahum macukatum mitochondria and its application to the assay, solubilisation and partial purification of the alternative oxidase, FEBS Lett., 96:252.CrossRefGoogle Scholar
  35. Schonbaum, G.R., Bonner, W.D., Jr., Storey, B.T., and Bahr, J.T., 1971, Specific inhibition of the cyanide-insensitive respiratory pathway in plant mitochondria by hydroxamic acids, Plant Physiol., 47:124.PubMedCrossRefGoogle Scholar
  36. Stern, D.B., and Palmer, J.D., 1984, Extensive and widespread homologies between mitochondrial DNA and chloroplast DNA in plants, Proc. Natl. Acad. Sci. USA, 81:1946.PubMedCrossRefGoogle Scholar
  37. Storey, B.T., 1976, Respiratory chain of plant mitochondria XVIII. Point of interaction of the alternate oxidase with the respiratory chain, Plant Physiol., 58:521.PubMedCrossRefGoogle Scholar
  38. Von Jagow, G., and Klingenberg, M., 1970, Pathways of hydrogen in mitochondria of Sacchaaomyceís canabetcgews-í4, Eur. J. Biochem., 12:583.CrossRefGoogle Scholar
  39. Ward, B.L., Anderson, R.S., and Bendich, A.J., 1981, The size of the mitochondrial genome is large and variable in a family of plants (Cucuab.íaceae), Cell, 25:793.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Roland Douce
    • 1
  • Richard Bligny
    • 1
  • Etienne-Pascal Journet
    • 1
  • Michel Neuberger
    • 1
  1. 1.DRF/BV (U.A au CNRS n° 576) CEN-G and USM-G - 85 X FPhysiologie Cellulaire VégétaleGrenoble, CedexFrance

Personalised recommendations