Pigment-Protein Complexes of Thylakoid Membranes: Assembly, Supramolecular Organization

  • George Akoyunoglou
  • Joan Argyroudi-Akoyunoglou
Part of the NATO ASI Series book series (NSSA, volume 91)


The biosynthesis and assembly of the pigment-protein complexes reflects in fact the biogenesis of the photosynthetic membrane, i.e., the etioplast to chloroplast differentiation. As it is known, in dark-grown plants the proplastids are transformed into etioplasts. Initially the etioplasts contain a number of perforated prothylakoids; the prolamellar bodies appear later, attached to the prothylakoids. The prolamellar bodies increase in size as darkness is prolongedl. It seems that in the early stages of etioplast development (in young etiolated leaves) all thylakoid components are synthesized at a relatively low rate; however, only some of these components accumulate, the rest being digested. The accumulation rate for each component follows a sigmoidal curve: it is initially low, then it increases and finally stops after reaching a steady level2. As the age of the etiolated tissue increases some of these components stop from being synthesized. Depending, therefore, on the age of the etiolated tissue, i.e., on the developmental stage of the etioplast, one may or may not observe the expression of some of these components in the dark-grown plants2. Etioplasts do not contain chlorophyll (Chl) but its precursor, protochlorophyllide (PChlide). The PChlide accumulates in the etioplast in the form of a complex with the enzyme PChlide-oxidoreductase, and it is located in the prothylakoids and the prolamellar bodies3. A number of other polypeptides can also be found in prothylakoids, while a variety of lipids have been extracted from prolamellar bodies4,5.


Continuous Light PSII Activity Chloroplast Development Stroma Lamella PSII Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Von Wettstein, The formation of plastid structure, Brookhaven Symposia in Biology, 11: 138 (1958).Google Scholar
  2. 2.
    G. Akoyunoglou, Biosynthesis of the pigment-protein complexes, in: “Protochlorophyllide Reduction and Greening”, C. Sironval and M. Brouers, eds., Martinus Nijhoff/Dr. Junk Publishers, The Hague (1984).Google Scholar
  3. 3.
    G. Akoyunoglou and H. W. Siegelman, Protochlorophyllide resynthesis in dark-grown bean leaves, Plant Physiol. 43: 66 (1968).PubMedCrossRefGoogle Scholar
  4. 4.
    C. Lütz, U. Röper, N. S. Beer and W. T. Griffiths, Sub-etioplast localization of the enzyme NADPH:Protochlorophyllide oxidoreductase,Eur. J. Biochem. 118: 347 (1981)PubMedCrossRefGoogle Scholar
  5. 5.
    S. Murakami and M. Ìkeuchi, Biochemical characterization and localization of the 36,000 dalton NADPH-Protochlorophyllide oxidoreductase in squash etioplasts, Progr. Clin. Biol. Res. 102B: 13 (1982).Google Scholar
  6. 6.
    J. H. Argyroudi-Akoyunoglou, Effect of cations on the reconstitution of heavy subchloroplast fractions (grana) in disorganized low-salt agranal chloroplasts, Arch. Biochem. Biophys. 176: 267 (1976).CrossRefGoogle Scholar
  7. 7.
    P. Antonopoulou, J.H. Argyroudi-Akoyunoglou and G. Akoyunoglou, The composition of stroma and grana thylakoid pigment-protein complexes, in: “Protochlorophyllide Reduction and Greening”, C. Sironval and M. Brouers, eds., Martinus Nijhoff/Dr. Junk Publishers, The Hague (1984).Google Scholar
  8. 8.
    J. H. Argyroudi-Akoyunoglou and A. Castorinis, Specificity of the chlorophyll to protein binding in the chlorophyll-protein complexes of the thylakoid, Arch. Biochem. Biophys. 200: 326 (1980).CrossRefGoogle Scholar
  9. 9.
    J. M. Anderson, J. C. Waldron and S. W. Thorne, Chlorophyll-protein complexes of spinach and barley thylakoids, FEBS Lett. 99: 227 (1978).CrossRefGoogle Scholar
  10. 10.
    J. H. Argyroudi-Akoyunoglou and G. Akoyunoglou, The chlorophyll-protein complexes of the thylakoids in greening plastids of Phaseo is vulgaris, FEBS Lett. 104: 78 (1979).CrossRefGoogle Scholar
  11. 11.
    J. H. Argyroudi-Akoyunoglou and H. Thomou, Separation of the pigment-protein complexes by SDS-sucrose density gradient centrifugation, FEBS Lett. 135: 177 (1981).CrossRefGoogle Scholar
  12. 12.
    J. H. Argyroudi-Akoyunoglou and G. Akoyunoglou, On the formation of photosynthetic membranes in bean plants, Photochem. Photobiol. 18: 219 (1973).CrossRefGoogle Scholar
  13. 13.
    D. I. Arnon, R.K. Chain, B. D. McSwain, H. Y. Tsujimoto and D. B. Knaff, Evidence from chloroplast fragments for three photosynthetic light reactions, Proc. Natl. Acad. Sci. 67: 1404 (1970).PubMedCrossRefGoogle Scholar
  14. 14.
    J. E. Mullet, J. J. Burke and C. J. Arntzen, Chlorophyll-proteins of photosystem I, Plant Physiol. 65: 814 (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    T. Y. Kuang, J. H. Argyroudi-Akoyunoglou, H. Y. Nakatani, J. Watson and C. Arntzen, On the origin of the long-wavelength fluorescence emission band (77°K) from photosystem I, Arch. Biochem. Biophys. 235: 618 (1984).CrossRefGoogle Scholar
  16. 16.
    J. H. Argyroudi-Akoyunoglou, Cation-induced transformation of the oligomeric to monomeric forms in the pigment-protein complexes of the thylakoid, Photobiochem. Photobiophys. 1: 279 (1980).Google Scholar
  17. 17.
    J. H. Argyroudi-Akoyunoglou, Polypeptide composition of the pigment-protein complexes of Phaseolus vulgaris thylakoids. Cation-induced disaggregation of oligomeric to monomeric forms correlates with the increase in the ratio F685/F730 in their fluorescence spectra, Progr. Clin. Biol. Res. 102B: 277 (1982).Google Scholar
  18. 18.
    J. H. Argyroudi-Akoyunoglou, A. Castorinis and G. Akoyunoglou, Cation-induced increase in the low-temperature fluorescence F685/F730 ratio in detergent solubilized pigment-protein complexes separated by sucrose gradient centrifugation, Photobiochem. Photobiophys. 4: 201 (1982).Google Scholar
  19. 19.
    J. H. Argyroudi-Akoyunoglou, The 77K fluorescence spectrum of the photosystem I pigment-protein complex CPIa, FEBS Lett. 171: 47 (1984).CrossRefGoogle Scholar
  20. 20.
    K. Satoh, P-695 emission form from the purified photosystem II chlorophyll-protein complex, FEBS Lett. 110: 53 (1980).CrossRefGoogle Scholar
  21. 21.
    G. Akoyunoglou, S. Tsakiris and J. H. Argyroudi-Akoyunoglou, Independent growth of the photosystem I and II units. The role of the light-harvesting pigment-protein complexes, in: “Photosynthesis, Vol. V, Chloroplast Development”, G. Akoyunoglou, ed., Balaban Internat. Sci. Services, Philadelphia, Pa (1981).Google Scholar
  22. 22.
    J. H. Argyroudi-Akoyunoglou and G. Akoyunoglou, Supramolecular structure of chlorophyll-protein complexes in relation to the Chla fluorescence of chloroplasts at room or liquid nitrogen temperature, Arch. Biochem. Biophys. 227: 469 (1983).CrossRefGoogle Scholar
  23. 23.
    J. H. Argyroudi-Akoyunoglou, A. Castorinis and G. Akoyunoglou, Biogenesis and organization of the pigment-protein complexes: Relation to the low-temperature fluorescence characteristics of developing thylakoids, Israel JJ. Bot. 33: 65 (1984).Google Scholar
  24. 24.
    R. Remy, A. Tremolieres, J. C. Duval, F. A. Ambart-Breteville and J. R. Dubecq, Study of the supramolecular organization of the LHCP Chl-protein, FEBS Lett. 137: 271 (1982)CrossRefGoogle Scholar
  25. 25.
    G. Akoyunoglou, Thylakoid biogenesis in higher plants: Assembly and reorganization, in: “Advances in Photosynthesis Research, Vol. IV”, C. Sybesma, ed., Martinus Nijhoff/Dr. W. Junk Publishers, The Hague (1984).Google Scholar
  26. 26.
    P. Homann, Cation effects on the fluorescence of isolated chloroplasts, Plant Physiol. 44: 932 (1969).PubMedCrossRefGoogle Scholar
  27. 27.
    N. Murata, Control of excitation transfer in Photosynthesis. II. Magnesium ion-dependent distribution of excitation energy between the two pigment systems in spinach chloroplasts, Biochem. Biophys. Acta 189: 171 (1969).CrossRefGoogle Scholar
  28. 28.
    N. Murata, Control of excitation transfer in Photosynthesis: I. Light-induced change of Chla fluorescence in Porphyridium cruentum, Biochim. Biophys. Acta 172: 242 (1969).CrossRefGoogle Scholar
  29. 29.
    C. Bonaventura and J. Myers, Fluorescence and oxygen evolution from Chlorella pyrenoidosa, Biochim. Biophys. Acta 189: 366 (1969).CrossRefGoogle Scholar
  30. 30.
    P. Bennoun, Correlation between states I and II in algae and the effect of magnesium on chloroplasts, Biochim. Biophys. Acta 368: 141 (1974).CrossRefGoogle Scholar
  31. 31.
    Y. S. Li, Salts and chloroplasts fluorescence, Biochim. Biophys. Acta 376: 180 (1975).CrossRefGoogle Scholar
  32. 32.
    N. Murata, H. Tashiro and A. Takamiya, Effects of divalent metal ions on Chla fluorescence in isolated spinach chloroplasts, Biochim. Biophys. Acta 197: 250 (1970)CrossRefGoogle Scholar
  33. 33.
    S. Izawa and N. E. Good, Effects of salts and electron transport on the conformation of isolated chloroplasts:II. Electron microscopy, Plant Physiol. 41: 544 (1976).CrossRefGoogle Scholar
  34. 34.
    J. Barber, An explanation for the relationship between salt-induced thylakoid stacking and the Chl fluorescence changes associated with changes in spillover of energy from photo-system II to photosystem I, FEBS Lett. 118: 1 (1980)CrossRefGoogle Scholar
  35. 35.
    R. J. Ellis, Chloroplast proteins: Synthesis, transport and assembly, Ann. Rev. Plant Physiol. 32: 111 (1981)CrossRefGoogle Scholar
  36. 36.
    S. G. Siddell and R. J. Ellis, Protein synthesis in chloroplasts. VI. Characteristics and products of protein synthesis in vitro in etioplasts and developing chloroplasts from pea leaves, Biochem. J. 146: 675 (1975)PubMedGoogle Scholar
  37. 37.
    R. J. Ellis, Protein synthesis by isolated chloroplasts, Biochim. Biophys. Acta 463: 185 (1977).Google Scholar
  38. 38.
    R. E. Zielinski and C. A. Price, Synthesis of thylakoid membrane proteins by chloroplasts isolated from spinach, J. Cell Biol. 85: 435 (1980).PubMedCrossRefGoogle Scholar
  39. 39.
    W. Bottomley and P. R. Whitfeld, Cell-free transcription and translation of total spinach chloroplast DNA, Eur. J. Biochem. 93: 31 (1979).PubMedCrossRefGoogle Scholar
  40. 40.
    J. R. Bedbrook, G. Link, D. M. Cohen, L. Bogorad and A. Rich, Maize plastid gene expressed during photoregulated development, Proc. Natl. Acad. Sci. USA 75: 3060 (1978).PubMedCrossRefGoogle Scholar
  41. 41.
    J. K. Hoober, Protein synthesis in chloroplasts, in: “Protein Synthesis”, E. H. McConkey, ed., Dekker, New York (1976).Google Scholar
  42. 42.
    J. Feierabend, Cooperation of cytoplasmic and plastidic protein synthesis in rye leaves, in: “Chloroplast Development”, G. Akoyunoglou and J. H. Argyroudi-Akoyunoglou, eds., Elsevier/ North Holland, Amsterdam (1978).Google Scholar
  43. 43.
    R. G. Hermann and J. Feierabend, The presence of DNA in ribosome-deficient plastids of heat-bleached rye leaves, Eur. J Biochem. 104: 603 (1980).CrossRefGoogle Scholar
  44. 44.
    N. W. Gillham, J. E. Boynton and N.-H. Chua, Genetic control of chloroplast proteins, Curr. Ady. Bioenerg. 9: 211 (1978).Google Scholar
  45. 45.
    N.-H. Chua and G. W. Schmidt, Transport of proteins into mitochondria and chloroplasts, J. Cell Biol. 81: 461 (1979).PubMedCrossRefGoogle Scholar
  46. 46.
    A. Grossman, S. Bartlett and N.-H. Chua, Energy-dependent uptake of cytoplasmically synthesized polypeptides by chloroplasts, Nature 285: 625 (1980).CrossRefGoogle Scholar
  47. 47.
    E.-I. Minami and A. Watanabe, Thylakoid membranes: The translational site of chloroplast DNA-regulated thylakoid polypeptides, Arch. Biochem. Biophys. 235: 562 (1984).CrossRefGoogle Scholar
  48. 48.
    G. Akoyunoglou, Assembly of functional components in chloroplast photosynthetic membranes, in: “Photosynthesis, Vol. V, Chloroplast Development”, G. Akoyunoglou, ed., Balaban International Science Services, Philadelphia, Pa (1981).Google Scholar
  49. 49.
    P. Antonopoulou and G. Akoyunoglou, Changes in the pigment composition of the thylakoids of Paseolus vulgaris during chloroplast development, in: “Advances in Photosynthesis Research, Vol. IV”, C. Sybesma, ed., Martinus Nijhoff/Dr. W. Junk Publishers, The Hague (1984).Google Scholar
  50. 50.
    A. Castorinis, G. Akoyunoglou and J. H. Argyroudi-Akoyunoglou, Correlation between the organization of the pigment-protein complexes and the Chla fluorescence yield of chloroplasts during development in Phaseolus vulgaris, Photobiochem. Photobiophys. 4: 283 (1982).Google Scholar
  51. 51.
    W. L. Butler and M. Kitajima, Energy transfer between photosystem II and photosystem I in chloroplasts, Biochim. Biophys. Acta 396: 72 (1975).CrossRefGoogle Scholar
  52. 52.
    G. Akoyunoglou, Reorganization of thylakoid components during chloroplast development in higher plants, Progr. Clin. Biol. Res. 102B: 171 (1982).Google Scholar
  53. 53.
    J. H. Argyroudi-Akoyunoglou, A. Akoyunoglou, K. Kalosakas and G. Akoyunoglou, Reorganization of the PSII unit in developing thylakoids of higher plants after transfer to darkness, Plant Physiol. 70: 1242 (1982).PubMedCrossRefGoogle Scholar
  54. 54.
    A. Akoyunoglou and G. Akoyunoglou, Mechanism of thylakoid reorganization during chloroplast development in higher plants, Israel J. Bot. 33: (1984).Google Scholar
  55. 55.
    A. Akoyunoglou and G. Akoyunoglou, Reorganization of thylakoid components during chloroplast development in higher plants. Changes in PSI unit components and in cytochromes, Plant Physiol. (in press).Google Scholar
  56. 56.
    J. Bennett, Biosynthesis of the light-harvesting Chla/b protein. Polypeptide turnover in darkness, Eur. J. Biochem. 118: 61 (1981).PubMedCrossRefGoogle Scholar
  57. 57.
    M. Viro and K. Kloppstech, Expression of genes for plastid membrame proteins in barley under intermittent light conditions, Planta 154: 18 (1982).CrossRefGoogle Scholar
  58. 58.
    L. Lavintman, G. Galling and I. Ohad, Modulation of PSI and PS II organization during loss and repair of photosynthetic activity in a temperature sensitive mutant of Chlorella pyrenoidosa, Plant Physiol. 68: 1264 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • George Akoyunoglou
    • 1
  • Joan Argyroudi-Akoyunoglou
    • 1
  1. 1.Biology DepartmentNuclear Research Center “Demokritos”AttikiGreece

Personalised recommendations