Microenvironmental Properties and Conformational Changes in Glycogen Phosphorylase

  • A. E. Evangelopoulos
Part of the NATO ASI Series book series (NSSA, volume 91)


Glycogen is a major source of energy for muscle contraction. Its breakdown and synthesis are regulated by the contractile state of the tissue as well as by the neural and hormonal control of the muscle, through changes in the phosphorylation state of glycogen phosphorylase and glycogen synthase. When muscle is stimulated electrically, calcium ions released from sarcoplasmic reticulum not only initiate muscle contraction but also activate phosphorylase kinase. As a result, the phosphorylation state of glycogen phosphorylase is increased and glycogenolysis is accelerated to provide the ATP required to sustain muscle contraction.


Glycogen Phosphorylase Sodium Cholate Rabbit Skeletal Muscle Difference Absorption Spectrum Fluorescein Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. T. Cori and C. F. Cori, The enzymic conversion of phosphorylase a to b. J. Biol. Chem. 158: 321 (1945).Google Scholar
  2. 2.
    E. G. Krebs and E. H. Fischer, The phosphorylase b to a converting enzyme of rabbit skeletal muscle. Biochim. Biophys. Acta 20: 150 (1956).PubMedCrossRefGoogle Scholar
  3. 3.
    C. F. Cori and G. T. Cori, Mechanism of formation of hexosemonophosphate in muscle and isolation of a new phosphate ester. Proc. Soc. Exp. Biol. Med. 34: 702 (1936).Google Scholar
  4. 4.
    E. Helmreich, M. C. Michaelides and C. F. Cori, Effect of substrates and substrate analogs on the binding of 5’-adenilic acid to muscle phosphorylase. Biochemistry 6: 3695 (1967).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Monod, J. Wyman and J. P. Changeux, On the nature of allosteric transitions:a possible model. J. Molec. Biol. 12: 88 (1965).PubMedCrossRefGoogle Scholar
  6. 6.
    E. G. Krebs and E. H. Fischer, Molecular properties and transformations of glycogen phosphorylase in animal tissues. Adv. Enzymol. 24: 263 (1962).Google Scholar
  7. 7.
    T. S. Ingebritsen, J. G. Foulkes and P. Cohen, The protein phosphatases involved in cellular regulation. Eur. J. Biochem. 132: 263 (1983).PubMedCrossRefGoogle Scholar
  8. 8.
    K. Titani, A. Koide, J. Hermann, L. H. Ericson, S. Kumar, R. D. Wade, K. A. Walsh, H Neurath and E. H. Fischer, Complete amino acid sequence of rabbit skeletal muscle glycogen phosphorylase. Proc. Natn. Acad. Sci. USA, 74: 4762 (1977).CrossRefGoogle Scholar
  9. 9.
    A. Koide, K. Titani, L. H. Ericson, S. Kumar, H. Neurath and K. A. Walsh, Sequence of the aminoterminal 349 residues of rabbit muscle glycogen phosphorylase including sites of covalent and allosteric control. Biochemistry 17: 5657 (1978).PubMedCrossRefGoogle Scholar
  10. 10.
    R. J. Fletterick, J. Sygusch, M. Semple and N. B. Madsen,Structure of glycogen phosphorylase a at 3.0 A° resolution and its ligand binding sites at 6 A°. J. Biol. Chem. 251: 6142 (1976).PubMedGoogle Scholar
  11. 11.
    I. T. Weber, L. N. Jonson, K. S. Wilson, D. G. R. Yeates, D. L. Wild and J. A. Jenkins, Crystallographic studies on the activity of glycogen phosphorylase b. Nature 273: 433 (1978).CrossRefGoogle Scholar
  12. 12.
    S. Sprang and R. J. Fletterick, The structure of glycogen phosphorylase a at 2.5 A°resolution. J. Mol. Bio1. 131: 523 (1979).CrossRefGoogle Scholar
  13. 13.
    L. N. Johnson, I. T. Weber, D. L.Wild, K. S. Wilson and D.G.R. Yeates, Crystallographic analysis at low resolution of metabolic binding sites on phosphorylase b. J. Mol. Bio1. 118: 579 (1978).CrossRefGoogle Scholar
  14. 14.
    L. N. Johnson, E. A. Stura, K. S. Wilson, M. S. P. Sansom and I. T. Weber, Nucleotide binding to glycogen phosphorylase b in the crystal. J. Mol. Biol. 143: 639 (1979).CrossRefGoogle Scholar
  15. 15.
    E. C. Y. Li, R. J. Fletterick, J. Sygusch and N. B. Madsen, An essential arginine residue in the active-site pocket of glycogen phosphorylase. Can. J. Biochem. 55: 465 (1977).PubMedCrossRefGoogle Scholar
  16. 16.
    N. G. Oikonomakos, T. G. Sotiroudis and A. E. Evangelopoulos, Interaction of phosphorylase b with eosin-influence of substrates and effectors on eosin-enzyme complex. Biochem. J. 181: 309 (1979).PubMedGoogle Scholar
  17. 17.
    C. T. Cazianis, T. G. Sotiroudis and A. E. Evangelopoulos, Spin-labelling of phosphorylase b using a paramagnetic 1-fluoro2,4-dinitrobenzene derivative. Biochim. Biophys. Acta, 621: 117 (1980).PubMedGoogle Scholar
  18. 18.
    T. G. Sotiroudis, C. T. Cazianis, N. G. Oikonomakos and A. E. Evangelopoulos, Effect of sodium cholate on the catalytic and structural properties of phosphorylase b. Eur. J. Biochem. 131: 625 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    M. M. Hoerl, K. Feldmann, K. D. Schnackers and E. J. M. Helmreich, Ionization of pyridoxal-5-P and the interactions of AMPS and thiophosphoseryl residues in native and succinilated ~bbit muscle glycogen phosphorylase b and a inferred from P NMR spectra. Biochemistry 18: 2457 (1979).PubMedCrossRefGoogle Scholar
  20. 20.
    K. Feldmann and E. J. M. Helmreich, The pyridoxal -5-P site in rabbit Okeletal3muscle glycogen phosphorylase b - an ultra-violet H and P nuclear magnetic resonance study. Bioche- mistry 15: 2394 (1976).CrossRefGoogle Scholar
  21. 21.
    S. J. W. Busby and G. K. Radda, Regulation of the glycogen phosphorylase system - from physical measurements to biological speculations. Curr. Top. Cell Reg. 10: 89 (1976).Google Scholar
  22. 22.
    L. L. Somerville and F. A. Quiocho, The Interaction of tetraiodofluorescein with creatine kinase, Biochim. Biophys. Acta 481: 493 (1977).Google Scholar
  23. 23.
    E. R. Kantrowitz, L.B. Jacobsberg, S. M. Landfear and W. N. Lipscomb, Interaction of tetraiodofluorescein with a modified form of aspartate transcarbamylase. Proc. Natl. Acad. Sci. USA 74: 111 (1977).PubMedCrossRefGoogle Scholar
  24. 24.
    T. G. Kalogerakos, N. G. Oikonomakos, C. G. Dimitropoulos, I. Karni-Katsadima and A. E. Evangelopoulos, Interaction of aspartate aminotransferase with mercurochrome. Biochem. J. 167: 53 (1977).PubMedGoogle Scholar
  25. 25.
    S. J. D. Karlish, Characterization of conformational changes in (Na,K) ATPase labeled with fluorescein at the active site. J. Bioenerg. Biomembr. 12: 111 (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    L. Brand, J. R. Gohlke and D. Sethu Rao, Evidence for binding of rose belgal and anilinonaphthalenesulfonates at the active site regions of liver alcohol dehydrogenase. Biochemistry 6: 3510 (1967).PubMedCrossRefGoogle Scholar
  27. 27.
    E. M. Kosower, Effect of Solvent on Spectra - Correlation of spectral absorption data with Z-values. J. Am. Chem. Soc. 80: 3261 (1958).CrossRefGoogle Scholar
  28. 28.
    D. C. Turner and L. Brand, Quantitative estimation of protein binding site polarity. Biochemistry 7: 3381 (1968).PubMedCrossRefGoogle Scholar
  29. 29.
    V. Dombradi, Structural aspects of the catalytic and regulatory function of glycogen phosphorylase. Int. J. Biochem. 13: 125 (1981).PubMedCrossRefGoogle Scholar
  30. 30.
    N. Oikonomakos, Chemical modification of an allosteric enzyme. Ph. D. Thesis, University of Athens(1977),Athens,Greece.Google Scholar
  31. 31.
    N. B. Madsen and S. Shechosky, Allosteric properties of phosphorylase b. J. Biol. Chem. 242: 3301 (1967).PubMedGoogle Scholar
  32. 32.
    L. L. Kastenschmidt, J. Kastenschmidt and E. Helmreich, Subunit interactions and their relationship to the allosteric properties of rabbit skeletal muscle phosphorylase b. Biochemistry 7: 3590 (1968).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • A. E. Evangelopoulos
    • 1
  1. 1.Department of Biochemistry, Center of Biological ResearchThe National Hellenic Research FoundationAthensGreece

Personalised recommendations