Advertisement

Mutagenicity Testing with Drosophila Melanogaster

  • F. E. Würgler
  • U. Graf
Part of the Basic Life Sciences book series

Abstract

The fruit fly, Drosophila melanogaster, is the eukaryote most often used to detect mutations in germ cells. There are several facts which make this insect an attractive test system for screening chemical compounds for mutagenic activity. The short generation time of only 10 days, low cost of culture media, easy breeding of large numbers of animals with simple facilities, and a. large number of well-defined genetic tests for various types of mutations are the principal advantages of Drosophila. Mutation research with Drosophila began in 1927 when H. J. Muller (1927) discovered that X-rays induce sex-linked recessive lethals. Particularly in the years after World War II, the field of radiation genetics profited a lot from studies with Drosophila (Sankaranarayanan and Sobels, 1976). Using the test for sex-linked recessive lethals, Charlotte Auerbach detected the first chemical mutagens (Auerbach and Robson, 1947). Chemicals were used for many years to induce changes in the genetic material, to get new information about either the chemical nature of the genetic material or the molecular organization of chromosomes. Already in the late forties, attempts were started to test chemical carcinogens for mutagenic activity (Demerec, 1948). Since that time a considerable number of chemicals, known carcinogens and known non-carcinogens among others, were tested for mutagenicity in Drosophila. Internationally accepted standard testing protocols were developed and used for routine screening. Attempts to validate the Drosophila tests were undertaken. Within the Gene-Tox Program (Green and Auletta, 1980), the world literature was critically analyzed on the experimental results obtained from the sex-linked recessive lethals test (Lee et al., 1983) and the chromosome mutation tests with Drosophila (Valencia et al., 1984), Experimental validation was attempted within the International Collaborative Program (de Serres and Ashby, 1981) and is continued within the International Program on Chemical Safety coordinated by the World Health Organization. Drosophila tests also represent an integral part of the mutagenicity testing program within the U.S. National Toxicology Program (National Toxicology Program, 1982).

Keywords

Mutation Frequency Imaginal Disc Chemical Mutagen Methyl Methanesulfonate National Toxicology Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaron, C. S., Nardin, H. E., and Lee, W. R., 1977a, Glass filter supports for treatment of adult D. melanogaster with chemical mutagens, Dros. Inf. Serv., 52:166.Google Scholar
  2. Aaron, C. S., Nardin, H. E., and Lee, W. R., 1977b, Effects on consumption behavior in Drosophila, Dros. Inf. Serv., 52:166.Google Scholar
  3. Aaron, C. S., Lee, W. R., Seamster, P. M., and Janca, F., 1977c, A non-aqueous gas exposure technique for microliter. quantities of chemical mutagens, Dros. Inf. Serv., 52:174–175.Google Scholar
  4. Abrahamson, S., and Lewis, E. B., 1971, The detection of mutations in Drosophila melanogaster, in: “Chemical Mutagens,” Vol. 2, Chapter 17, A. Hollaender, ed., Plenum Press, New York, pp. 461–487.CrossRefGoogle Scholar
  5. Abrahamson, S., and Valencia, R., 1980, Evaluation of substances of interest for genetic damage using Drosophila melanogaster, Food and Drug Administration Report, pp. 1-25.Google Scholar
  6. Abrahamson, S., Wurgler, F. E., De Jongh, C., and Meyer, H. Unger, 1980, How many loci on the X-chromosome of Drosophila melanogaster can mutate to recessive lethals? Environ. Mutagen., 2:447–453.PubMedCrossRefGoogle Scholar
  7. Auerbach, C., 1956, “Mutation: An Introduction to Research on Mutagenesis,” Methods, Part I, Oliver and Boyd, Edinburgh and London, 176 pages.Google Scholar
  8. Auerbach, C., 1962, “Mutation: An Introduction to Research on Mutagenesis,” Oliver and Boyd, Edinburgh, 504 pages.Google Scholar
  9. Auerbach, C., and Robson, J. M., 1947, The production of mutations by chemical substances, Proc. Roy. Soc. Edinburgh B., 62:271–283.Google Scholar
  10. Baird, W. M., 1979, The use of radioactive carcinogens to detect DNA modifications, in: “Chemical Carcinogens and DNA,” P. L. Grover, ed., CRC Press, Boca Raton, Florida, pp. 59–83.Google Scholar
  11. Baker, B. S., Gatti, M., Carpenter, A. T. C., Pimpinelli, S., and Smith, D. A., 1980, Effects of recombination-deficient and repair-deficient loci on meiotic and mitotic chromosome behavior in Drosophila melanogaster, in: “DNA Repair and Mutagenesis in Eukaryotes,” W. M. Generoso, M. D. Shelby, and F. J. de Serres, eds., Plenum Press, New York and London, pp. 189–208.Google Scholar
  12. Beadle, G. W., and Sturtevant, A. H., 1935, X-chromosome inversions and meiosis in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 21:384–390.PubMedCrossRefGoogle Scholar
  13. Becker, H. J., 1975, X-ray-and TEM-induced mitotic recombination in Drosophila melanogaster: Unequal and sister-strand recombination, Molec. Gen. Genet., 138:11–24.PubMedCrossRefGoogle Scholar
  14. Boyd, J. B., and Harris, P. V., 1981, Mutants partially defective in excision repair at five autosomal loci in Drosophila melanogaster, Chromosome (Berlin), 82:249–257.CrossRefGoogle Scholar
  15. Boyd, J. B., Golino, M. D., Shaw, K. E. S., Osgood, C. J., and Green, M. M., 1981, Third chromosome mutagen-sensitive mutants of Drosophila melanogaster, Genetics, 97:607–623.PubMedGoogle Scholar
  16. Brown, T. C., and Boyd, J. B., 1981, Postreplication repair-defective mutants of Drosophila melanogaster fall into two classes, Molec. Gen. Genet., 183:356–362.PubMedCrossRefGoogle Scholar
  17. Cavalli-Sforza, L. L., and Bodmer, W. F., 1971, “The Genetics of Human Populations,” Freeman, San Francisco, 965 pages.Google Scholar
  18. Chandley, A. C., and Bateman, A. J., 1962, Timing of spermatogenesis in Drosophila melanogaster using tritiated thymidine, Nature, 193:299–300.PubMedCrossRefGoogle Scholar
  19. Demerec, M., 1948, Mutations induced by carcinogens, Brit. J. Cancer, 2:114–117.CrossRefGoogle Scholar
  20. Denell, R. E., Lim, M.-C., and Auerbach, C., 1978, Diepoxybutane-induced male-transmissible X-autosome translocations in Drosophila melanogaster: A test of the supporting evidence for the Lifschitz-Lindsley model of spermatogenesis, Mutat. Res., 49:219–224.PubMedCrossRefGoogle Scholar
  21. de Serres, F. J., and Ashby, J., 1981, Evaluation of short-term tests for carcinogenesis, Report of the International Collaborative Program, in: “Progress in Mutation Research,” Vol. 1, Elsevier/North-Holland, New York, Amsterdam, Oxford, 827 pages.Google Scholar
  22. Engels, W. R., 1979, The estimation of mutation rates when premeiotic events are involved, Environ. Mutagen., 1:37–43.PubMedCrossRefGoogle Scholar
  23. Fisher, R. A., 1958, “Statistical Methods for Research Workers,” Hafner Publishing Co., New York, 354 pages.Google Scholar
  24. Garcia-Bellido, A., Ripoll, P., and Morata, G., 1976, Developmental compartmentalization in the dorsal mesothoracic disc of Drosophila, Dev. Biol., 48:132–147.PubMedCrossRefGoogle Scholar
  25. Gocke, E., Eckhardt, K., King, M-T., and Wild, D., 1982, Some statistical aspects of spontaneous sex-linked recessive lethal mutations in Drosophila, Mutat. Res., 104:239–242.PubMedCrossRefGoogle Scholar
  26. Graf, U., 1972, Spontaneous mutations in Drosophila melanogaster, Humangenetik, 16:27–32.PubMedCrossRefGoogle Scholar
  27. Graf, U., and Würgler, F. E., 1976, MMS-sensitive strains in Drosophila melanogaster, Mutat. Res., 34:251–258.CrossRefGoogle Scholar
  28. Graf, ü, Green, M. M., and Würgler, F. E., 1979, Mutagen-sensitive mutants in Drosophila melanogaster. Effects on premutational damage, Mutat. Res., 63:101–112.PubMedCrossRefGoogle Scholar
  29. Graf, U., Kägi, A., and Würgler, F. E., 1982, Mutagenesis in spermatozoa of Drosophila melanogaster by cross-linking agents depends on the mus (1)101+ gene product in the oocyte, Mutat. Res., 95:237–249.PubMedCrossRefGoogle Scholar
  30. Graf, U., Juon, H., Katz, A. J., Frei, H. J., and Würgler, F. E., 1983, A pilot study on a new Drosophila spot test, Mutat. Res. Letters, 120:233–239.CrossRefGoogle Scholar
  31. Green, S., and Auletta, A., 1980, An evaluation of bioassays in genetic toxicology, Mutat. Res., 76:165–168.PubMedGoogle Scholar
  32. Griesemer, R. A., and Cueto, C., 1980, Toward a classification scheme for degrees of experimental evidence for the carcino-genicity of chemicals for animals, in: “Molecular and Cellular Aspects of Carcinogen Screening Tests,” R. Montesano, H. Bartsch, and L. Tomatis, eds., International Agency for Research on Cancer Scientific Publication No. 27, pp. 259-281.Google Scholar
  33. Gupta, R. C., Reddy, M. V., and Randerath, K., 1982, 32-P-post-labeling analysis of non-radioactive aromatic carcinogen-DNA adducts, Carcinogenesis, 3:10801–1092.CrossRefGoogle Scholar
  34. Hashimoto, Y., Shudo, K., and Okamoto, T., 1982, Modification of nucleic acids with muta-carcinogenic heteroaromatic amines in vivo. Identification of modified bases in DNA extracted from rats injected with 3-amino-1-methyl-5H-pyrido[4,3-b]-indole and 2-amino-6-methyldipyrido[1,2-a:3′,2′-d] imidazole, Mutat. Res., 105:9–13.PubMedCrossRefGoogle Scholar
  35. Hemminki, K., 1979, Fluorescence study of DNA alkylation by epoxides, Chem.-Biol. Interac., 26:269–278.CrossRefGoogle Scholar
  36. Herskowitz, I. H., 1951, The genetic basis of X-ray induced recessive lethal mutations, Genetics, 36:356–363.PubMedGoogle Scholar
  37. Kale, P. G., and Baum, J. W., 1979, Sensitivity of Drosophila melanogaster to low concentrations of gaseous mutagens. II. Chronic exposures, Mutat. Res., 68:59–68.PubMedCrossRefGoogle Scholar
  38. Kastenbaum, M. A., and Bowman, K. O., 1970, Tables for determining the statistical significance of mutation frequencies, Mutat. Res., 9:527–549.PubMedCrossRefGoogle Scholar
  39. Lee, W. R., 1978, Dosimetry of chemical mutagens in eukaryote germ cells, in: “Chemical Mutagens,” Vol. 5, A, Hollaender and F. J. de Serres, eds., Plenum Press, New York, pp. 177–202.Google Scholar
  40. Lee, W. R., Abrahamson, S., Valencia, R., Von Halle, E. S., Würgler, F. E., and Zimmering, S., 1983, The sex-linked recessive lethal test for mutagenesis in Drosophila melanogaster. A report of the U.S. Environmental Protection Agency Gene-Tox Program, Mutat. Res., 123:183–279.PubMedGoogle Scholar
  41. Lifschytz, E., and Falk, R., 1969, Fine structure analysis of a chromosome segment in Drosophila melanogaster: Analysis of ethyl methanesulfonate-induced lethals, Mutat. Res., 8:147–155.PubMedCrossRefGoogle Scholar
  42. Lim, J. K., and Snyder, L. A., 1968, The mutagenic effects of two monofunctional alkylating chemicals on mature spermatozoa of Drosophila, Mutat. Res., 6:129–137.PubMedCrossRefGoogle Scholar
  43. Lindsley, D. L., 1965, Chromosome function at the supragenic level, in: “International Symposium on Genes and Chromosomes: Structure and Function,” J. I. Valencia and R. F. Grell, eds., National Cancer Institute Monograph 18, pp. 275-290.Google Scholar
  44. Lindsley, D. L., and Grell, E. H., 1968, Genetic variations of Drosophila melanogaster, Carnegie Institute, Washington, Publication No. 627, 472 pages.Google Scholar
  45. Lindsley, D. L., and Tokuyasu, K. T., 1980, Spermatogenesis, in: “The Genetics and Biology of Drosophila,” Vol. 2, M. Ashburner and T. R. F. Wright, eds., Academic Press, London, pp. 225–294.Google Scholar
  46. Lindsley, D. L., Edington, C. W., and Von Halle, E. S., 1960, Sex-linked recessive lethals in Drosophila whose expression is suppressed by the Y-chromosome, Genetics, 45:1649–1670.PubMedGoogle Scholar
  47. Lindsley, D. L., Camba, C., and Waters, M., 1962, The correlations between radiation-induced male sterility and reciprocal translocation in Drosophila, Abstract of Second International Congress of Radiation Research, Harrogate, England, 5–11 August 1962, p. 153.Google Scholar
  48. Lutz, W. K., 1979, In vivo covalent binding of organic chemicals to DNA as a quantitative indicator in the process of chemical carcinogenesis, Mutat. Res., 65:289–356.PubMedGoogle Scholar
  49. Magnusson, JV, Hällstrm, I., and Ramel, C., 1979, Studies on metabolic activation of vinyl chloride in Drosophila melanogaster after pretreatment with phenobarbital and polychlorinated biphenyls, Chem.-Biol. Interac., 24:287–298.CrossRefGoogle Scholar
  50. Mohn, G., and Würgler, F. E., 1972, Mutator genes in different species, Humangenetik, 16:49–58.PubMedCrossRefGoogle Scholar
  51. Mollet, P., and Würgler, F. E., 1973, An apparatus to inject large numbers of Drosophila with constant amounts of fluid within a short time, Dros. Inf. Serv., 50:202.Google Scholar
  52. Mollet, P., and Würgler, F. E., 1974, Detection of somatic recombination and mutation in Drosophila. A method for testing genetic activity of chemical compounds, Mutat. Res., 25:421–424.PubMedCrossRefGoogle Scholar
  53. Mollet, P., and Weilenmann, W., 1976, Characteristics of a new mutagenicity test. Induction of somatic recombination and mutation in Drosophila by different chemicals (Abstract), Mutat. Res., 38:131–132.Google Scholar
  54. Muller, H. J., 1927, The problem of genic modification, Fifth International Genetics Congress, Berlin, Z. ind. Abst. Vererb. Lehre, I (Suppl.):234–260.Google Scholar
  55. Muller, H. J., 1952, The standard error of the frequency of mutations some of which are of common origin, Genetics, 37:608.Google Scholar
  56. Muller, H. J., and Altenburg, E., 1930, The frequency of translocations produced by X-rays in Drosophila, Genetics, 15:283–311.PubMedGoogle Scholar
  57. Muller, H. J., and Oster, I. I., 1963, Some mutational techniques in Drosophila, in: “Methodology in Basic Genetics,” W. J. Burdette, ed., Holden-Day, San Francisco, California, pp. 240–278.Google Scholar
  58. Muller, R., and Rajewsky, M. F., 1981, Antibodies specific for DNA components structurally modified by chemical carcinogens, J. Cancer Res. Clin. Oncol., 102:99–113.PubMedCrossRefGoogle Scholar
  59. National Toxicology Program, 1982, Review of current DHHS, DOE and EPA research related to toxicology; fiscal year 1982, Publication NTP-82-040, June 1982. National Toxicology Program, Public Health Services, U.S. Department of Health and Human Services, 301 pages.Google Scholar
  60. Nöthiger, R., 1970, Sucrose density separation: A method for collecting large numbers of Drosophila larvae, Dros. Inf. Serv., 45:177.Google Scholar
  61. Oster, I. I., 1977, Evaluation of substances of interest for genetic damage using Drosophila melanogaster, Food and Drug Administration Report, 21 pages.Google Scholar
  62. Purchase, I. F. H., 1982, An appraisal of predictive tests for carcinogenicity, Mutat. Res., 99:53–71.PubMedGoogle Scholar
  63. Roberts, P. A., 1976, The genetics of chromosome aberrations, in: “The Genetics and Biology of Drosophila,” M. Ashburner and E. Novitski, eds., Vol. 1a, Academic Press, New York and London, pp. 67–184.Google Scholar
  64. Sankaranarayanan, K., and Sobels, F. H., 1976, Radiation Genetics, in: “The Genetics and Biology of Drosophila,” E. Novitski and M. Ashburner, eds., Vol. 1c, Academic Press, London, pp. 1089–1250.Google Scholar
  65. Schewe, M. J., Suzuki, D. T., and Erasmus, U., 1971, The genetic effects of mitomycin C in Drosophila melanogaster. II. Induced meiotic recombination, Mutat. Res., 12:269–279.PubMedCrossRefGoogle Scholar
  66. Schweizer, P., and Cordt-Riehle, I., 1981, Induktion somatischer Rekombination durch 50 kV und 100 kV Röntgenstrahlen bei Drosophila. Preceedings: Wissenschaftliche Tagung der “Schweizerischen Gesellschaft für Strahlenbiologie und Strahlenphysik,” Zürich, 16–17 Oktober 1981, pp. 52-60.Google Scholar
  67. Sega, G. A., and Lee, W. R., 1970, A vacuum injection technique for obtaining uniform dosages in Drosophila melanogaster, Dros. Inf. Serv., 45:179.Google Scholar
  68. Selby, P. B., and Olson, W. H., 1981, Methods and criteria for deciding whether specific-locus mutation-rate data in mice indicate a positive, negative, or inconclusive result, Mutat. Res., 83:403–418.CrossRefGoogle Scholar
  69. Shukla, P. T., and Auerbach, C., 1979, The delayed mutagenic action of hydroxylamine in Drosophila, Mutat. Res., 61:399–400.PubMedCrossRefGoogle Scholar
  70. Slizynska, H., 1963, Origin of repeats in Drosophila chromosomes, Genetic Res. C., 4:154–157.CrossRefGoogle Scholar
  71. Slizynska, H., 1969, The progressive approximation, with storage, of the spectrum of TEM-induced chromosomal changes in Drosophila sperm to that found after irradiation, Mutat. Res., 8:165–175.PubMedCrossRefGoogle Scholar
  72. Smith, P. D., 1973, Mutagen sensitivity of Drosophila melanogaster. I. Isolation and preliminary characterization of a methyl methanesulfonate-sensitive strain, Mutat. Res., 20:215–220.PubMedCrossRefGoogle Scholar
  73. Smith, P. D., 1976, Mutagen sensitivity of Drosophila melanogaster. III. X-linked loci governing sensitivity to methyl methane-sulfonate, Molec. Gen. Genet., 149:73–85.PubMedCrossRefGoogle Scholar
  74. Smith, P. E., Snyder, R. D., and Dusenbery, R. L., 1980, Isolation and characterization of repair-deficient mutants of Drosophila melanogaster, in: “DNA Repair and Mutagenesis in Eukaryotes,” W. M. Generoso, M. D. Shelby, and F. J. de Serres, eds., Plenum Press, New York and London, pp. 175–188.Google Scholar
  75. Sparrow, A. H., Schairer, L. A., and Villalobos-Peitrini, R., 1974, Comparison of somatic mutation rates induced in Trandescantia by chemical and physical mutagens, Mutat. Res., 26:265–276.PubMedCrossRefGoogle Scholar
  76. Valencia, R., 1977, Mutagenesis screening of pesticides using Drosophila, Environmental Protection Agency Report, 70 pages.Google Scholar
  77. Valencia, R., Abrahamson, S., Lee, W. R., Von Halle, E. S., Woodruff, R. C., Würgler, F. W., and Zimmering, S., 1984, Chromosome mutation tests for mutagenesis in Drosophila melanogaster. A report of the U.S. Environmental Protection Agency GENE-TOX Program, Mutat. Res., 134:61–88.PubMedGoogle Scholar
  78. Verburgt, F. G., and Vogel, E., 1977, Vinyl chloride mutagenesis in Drosophila melanogaster, Mutat. Res., 48:327–336.PubMedCrossRefGoogle Scholar
  79. Vogel, E., 1974, Mutagenic activity öf the insecticide oxydemeton-methyl in a resistant strain of Drosophila melanogaster, Experientia, 30:396–397.PubMedCrossRefGoogle Scholar
  80. Vogel, E., 1976, Mutagenicity of carcinogens in Drosophila as a function of. genotype-controlled metabolism, in: “In Vitro Metabolic Activation in Mutagenicity Testing,” F. J. de Serres, J. R. Fouts, J. R. Bend, and R. M, Philpot, eds., Elsevier/ North-Holland Biomedical Press, Amsterdam, pp. 63–79.Google Scholar
  81. Vogel, E., 1980, Genetical relationship between resistance to insecticides and procarcinogens in two Drosophila populations, Arch. Toxicol., 43:201–211.PubMedCrossRefGoogle Scholar
  82. Vogel, E., and Liiers, H., 1974, A comparison of adult feeding to injection in Drosophila melanogaster, Dros. Inf. Serv., 51:113–114.Google Scholar
  83. Vogel, E., and Ramel, C., 1980, Mutagenesis assays with Drosophila, in: “Long-Term and Short-Term Screening Assays for Carcinogens: A Critical Appraisal,” International Agency for Research on Cancer, IARC Monographs on the evaluation of the carcinogenic risk of chemicals to humans, Suppl. 2:157-183.Google Scholar
  84. Vogel, E., Blijleven, W. G. H., Klapwijk, P. M., and Zijlstra, J. A., 1980, Some current perspectives of the application of Drosophila in the evaluation of carcinogens, in: “The Predictive Value of Short-Term Screening Tests in Carcinogenicity,” G. M. Williams, R. Kroes, H. W. Waaijers, and K. W. van de Poll, eds., Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 125–147.Google Scholar
  85. Vogel, E. W., Blijleven, W. G. H., Kortselius, M. J. H., and Zijlstra, J. A., 1982, A search for some common characteristics of the effects of chemical mutagens in Drosophila, Mutat. Res., 92:69–87.PubMedCrossRefGoogle Scholar
  86. Vogel, E., Schalet, A., Lee, W. R., and Wiirgler, F. E., 1981, Mutagenicity of selected chemicals in Drosophila, in: “Comparative Chemical Mutagenesis,” F. J. de Serres and M. D. Shelby, eds., Plenum Press, New York, pp. 175–256.CrossRefGoogle Scholar
  87. Vogel, E. W., Zijlstra, J. A., and Blijleven, W. G. H., 1983, Mutagenic activity of selected aromatic amines and polycyclic hydrocarbons in Drosophila melanogaster, Mutat. Res., 107:53–77.PubMedCrossRefGoogle Scholar
  88. von Borstel, R. C., 1955, Differential response of meiotic stages in Habrobracon eggs to nitrogen mustard, Genetics, 40:107–116.Google Scholar
  89. Watson, W. A. F., 1982, The mutagenic activity of quercetin and kaempferol in Drosophila melanogaster, Mutat. Res., 103:145–147.PubMedCrossRefGoogle Scholar
  90. Würgler, F.E., and Berchtold, W., 1982, A FORTRAN program for the Kastenbaum-Bowman test, Biometrical J., 24:197–200.CrossRefGoogle Scholar
  91. Würgler, R. E., and Graf, U., 1980, Mutation induction in repair-deficient strains of Drosophila melanogaster, in: “DNA Repair and Mutagenesis in Eukaryotes,” W. M. Generoso, M. D. Shelby, and F. J. de Serres, eds., Plenum Press, New York and London, pp. 223–240.Google Scholar
  92. Würgler, F. E., Sobels, F. H., and Vogel, E., 1977, Drosophila as an assay system for detecting genetic changes, in: “Handbook of Mutagenicity Test Procedures,” B. J. Kilbey, M. Legator, W. Nichols, and C. Ramel, eds., Elsevier/North-Holland, Amsterdam, pp. 335–373.Google Scholar
  93. Würgler, F. E., Woodruff, R. C., Valencia, R., Von Halle, E. S., Graf, U., and Zimmering, S., 1985, Heritable reciprocal translocations in Drosophila melanogaster: A methodological review, Mutat. Res. (in press).Google Scholar
  94. Younes, M., Siegers, C.-P., and Filser, J. G., 1979, Effect of dithiocarb and dimethyl sulfoxide on irreversible binding of 14-C-bromobenzene to rat liver microsomal protein, Arch. Toxicol., 42:289–293.PubMedCrossRefGoogle Scholar
  95. Zimmering, S., 1973, A note on Drosophila as a mutagenicity test system, Environ. Health Persp., 2:111–113.Google Scholar
  96. Zimmering, S., 1981, Review of the current status of the mei-9a test for chromosome loss in Drosophila melanogaster: An assay with radically improved detection capacity for chromosome lesions induced by methyl methanesulfonate (MMS), dimethyl-nitrosamine (DMN), and especially diethylnitrosamine (DEN) and procarbazine, Mutat. Res., 83:69–80.PubMedCrossRefGoogle Scholar
  97. Zimmering, S., 1982, Note on the utility of the st mus302 test for chromosome loss in a blind test of an environmental compound for chromosome breakage in Drosophila, Mutat. Res., 104: 117–119.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • F. E. Würgler
    • 1
  • U. Graf
    • 1
  1. 1.Institute of ToxicologySwiss Federal Institute of Technology and University of ZürichSchwerzenbach near ZürichSwitzerland

Personalised recommendations