Advertisement

Mutagen Testing of Agricultural Chemicals with Yeast

  • Friederike Eckardt
  • R. C. von Borstel
Part of the Basic Life Sciences book series

Abstract

The microorganism Saccharomyces cerevisiae is frequently used to test chemical agents in short-term mutagenicity tests. Advantages of yeast are its eukaryotic character and the numerous genetic end-points which can be tested. A disadvantage is the lower sensitivity towards compounds which, when compared with the Salmonella Ames test, need to be metabolized in order to be active. However, the sensitivity of yeast tests can be improved by using cells from the logarithmic phase and by growing them under conditions which increase the activity of metabolizing enzymes, such as the cytochrome P-448/P-450 complexes. Furthermore, we discuss which information can be drawn from the shape of the survival and mutation frequency curves, and which parameters from the mutant yield curves can be used to compare the mutagenic efficiencies of various agents or the mutabilities of various test systems. Also, the qualitative yeast assay results are compiled for insecticides and herbicides in agricultural usage in Third World countries (Pakistan, for example).

Keywords

Saccharomyces Cerevisiae Gene Conversion Yield Curve Mutagen Test Agricultural Chemical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azari, M. R., and Wiseman, A., 1982, Purification and characterization of the cytochrome P-448 component of a benzo(a)pyrene hydroxylase from Saccharomyces cerevisiae, Anal. Biochem., 122:129–138.PubMedCrossRefGoogle Scholar
  2. Bacila, M., Horecker, B., and Stoppani, A. O. M., 1978, “Biochemistry and Genetics of Yeast,” Academic Press, New York, San Francisco, London, 594 pages.Google Scholar
  3. Bandas, E. L., 1979, Lethal and genetic effects of the systemic fungicide benomyl on Saccharomyces cerevisiae, Sov. Genet., 15:883–884 (translation) and Genetika, 15:1330-1332.Google Scholar
  4. Bauer, K. H., 1928, “Mutationstheorie der Geschwulst-Entstehung,” Springer-Verlag, Berlin, 84 pages.CrossRefGoogle Scholar
  5. Boveri, T., 1914, “Zur Frage der Entstehung maligner Tumoren,” Gustav Fischer, Jena, Germany, 64 pages.Google Scholar
  6. Broach, J. R., 1981, Genes of Saccharomyces cerevisiae, in: “The Molecular Biology of the Yeast Saccharomyces cerevisiae,” J. N. Strathern, E. W. Jones, and J. R. Broach, eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 653–727.Google Scholar
  7. Brooks, T. M., Dean, B. J., Hutson, D. H., and Potter, D., 1982, Microbiol mutation studies with tetrachlorvinphos (Gardona®), Mutat. Res., 105:211–221.PubMedCrossRefGoogle Scholar
  8. Callen, D. F., and Philpot, R. M., 1977, Cytochrome P-450 and the activation of promutagens in Saccharomyces cerevisiae, Mutat. Res., 45:309–324.PubMedCrossRefGoogle Scholar
  9. Chattoo, B. B., Sherman, F., Azubalis, D. A., Fjellstedt, T. A., Mehnert, D., and Ogur, M., 1979, Selection of lys2 mutants of the yeast Saccharomyces cerevisiae by the utilization of α-aminoadipate, Genetics, 93:51–65.PubMedGoogle Scholar
  10. Ciriacy, M., 1975, Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae, II. Two loci controlling synthesis of the glucose repressible ADH II., Molec. Gen. Genet., 138:157–164.PubMedCrossRefGoogle Scholar
  11. Davies, P. J., Evans, W. E., and Parry, J. M., 1975, Mitotic recombination induced by chemical and physical agents in the yeast Saccharomyces cerevisiae, Mutat. ites., 29:301–314.CrossRefGoogle Scholar
  12. Dean, B. J., Doak, S. M. A., and Somerville, H., 1975, Potential mutagenicity of dieldrin (HEOD) in mammals, Food Cosmet. Toxicol., 13:317–323.PubMedCrossRefGoogle Scholar
  13. de Bertoldi, M., Griselli, M., Giovannetti, M., and Barale, R., 1980, Mutagenicity of pesticides evaluated by means of gene conversion in Saccharomyces cerevisiae and in Aspergillus nidulans, Environ. Mutagen., 2:359–370.PubMedCrossRefGoogle Scholar
  14. de Serres, F. J., and Ashby, J., 1981, “Evaluation of Short-Term Tests for Carcinogens,” Elsevier/North-Holland, Amsterdam, 827 pages.Google Scholar
  15. Eckardt, F., and Haynes, R. H., 1977, Kinetics of mutation induction by ultraviolet light in excision-deficient yeast, Genetics, 85:225–247.PubMedGoogle Scholar
  16. Eckardt, F., and Haynes, R. H., 1980a, Quantitative measures of mutagenicity and mutability based on mutant yield data, Mutat. Res., 74:439–458.PubMedGoogle Scholar
  17. Eckardt, F., and Haynes, R. H., 1980b, Quantitative measures of induced mutagenesis, in: “Short-Term Tests for Chemical Carcinogens,” H. F. Stich and R. H. C. San, eds., Springer-Verlag, New York, pp. 454–473.Google Scholar
  18. Eckardt, F., and Siede, W., 1985, Mutagen testing with yeast, in: “Basic and Applied Mutagenesis: with Special Reference to Agricultural Chemicals in Developing Countries,” Amir Muhammed and R. C. von Borstel, eds., Plenum Press, New York, pp. 305–322.Google Scholar
  19. Eckardt, F., Albers, M., and Summer, K. H., 1983, Influence of gluta-thione on MNNG-induced mutagenicity and toxicity in yeast, Mutat. Res., 113:249–250.Google Scholar
  20. Eckardt, F., Muliawan, H., de Ruiter, N., and Kappus, H., 1981, Rat hepatic vinyl chloride metabolites induce gene conversion in the yeast strain D7RAD in vitro and in vivo, Mutat. Res., 91:381–390.PubMedCrossRefGoogle Scholar
  21. Ejchart, A., and Putrament, A., 1979, Mitochondrial mutagenesis in Saccharomyces cerevisiae. I. Ultraviolet radiation, Mutat. Res., 60:173–180.PubMedCrossRefGoogle Scholar
  22. Eya, B. K., and Talcott, R. E., 1980, Effect of N-alkyl chain length on the mutagenicity of N-nitrosated 1-napthyl N-alkylcarbamates, Environ. Mutagen., 2:395–404.PubMedCrossRefGoogle Scholar
  23. Fahrig, R., 1973, Nachweis einer genetischen Wirkung von Organo-phosphor-Insektiziden, Naturwiss., 60:50–51.PubMedCrossRefGoogle Scholar
  24. Fahrig, R., 1974, Comparative mutagenicity with pesticides, International Agency for Research on Cancer Scientific Publication, Vol. 10, pp. 161-181.Google Scholar
  25. Fahrig, R., 1975, Development of host-mediated mutagenicity tests: Yeast systems. II. Recovery of yeast cells out of testes, liver, lung and peritoneum of rats, Mutat. Res., 31:381–394.PubMedGoogle Scholar
  26. Food and Agriculture Organization, 1977, Pesticide residues in food, FAO Plant Production and Protection Paper, Rome, 76 pages.Google Scholar
  27. Gentile, J. M., Gentile, G. J., Bultman, J., Sechriest, R., Wagner, E. D., and Plewa, M. J., 1982, An evaluation of the genotoxic properties of insecticides following plant and animal activation, Mutat. Res., 101:19–29.PubMedCrossRefGoogle Scholar
  28. Gentile, J. M., Wagner, E. D., and Plewa, M. J., 1977, The detection of weak recombinogenic activities in the herbicides alachlor and propachlor using a plant-activation bioassay, Mutat. Res., 48:113–116.PubMedCrossRefGoogle Scholar
  29. Gocke, E., and Manney, T. R., 1979, Expression of radiation-induced mutations at the arginine permease (CAN1) locus in Saccharomyces cerevisiae, Genetics, 91:53–66.PubMedGoogle Scholar
  30. Guerzoni, M. E., Cupolo, L. Del, and Ponti, I., 1976, Attivita mutagenica degli antiparassitari, Riv. Sci. Teen. Alim. Nutr. Urn., 6:161–165.Google Scholar
  31. Haynes, R. H., 1966, The interpretation of microbial inactivation and recovery phenomena, Radiat. Res. (Suppl.), 6:1–29.CrossRefGoogle Scholar
  32. Haynes, R. H., 1975, The influence of repair processes on radio-biological survival curves, in: “Cell Survival after Low Doses of Radiation,” T. Alper, ed., John Wiley and Sons Ltd., London, pp. 197–208.Google Scholar
  33. Haynes, R. H., and Eckardt, F., 1979, Analysis of dose-response patterns in mutation research, Can. J. Genet. Cytol., 21:277–302.PubMedGoogle Scholar
  34. Haynes, R. H., and Eckardt, F., 1980, Mathematical analysis of mutation induction kinetics, in: “Chemical Mutagens,” Vol. 6, A. Hollaender and F. J. de Serres, eds., Plenum Press, New York and London, pp. 271–307.CrossRefGoogle Scholar
  35. Karenlampi, S. O., Marin, E., Hanninen, O. O. P., 1980, Occurrence of cytochrome P-450 in yeasts, J. Gen. Microbiol., 120:529–533.Google Scholar
  36. Kelly, D., and Parry, J. M., 1983, Metabolic activation of cytochrome P-450/P-448 in the yeast Saccharomyces cerevisiae, Mutat. Res., 108:147–159.PubMedCrossRefGoogle Scholar
  37. King, J. D., Wiseman, A., and Wilkie, D., 1983, Studies on the genetic regulation of cytochrome P-450 production in Saccharomyces cerevisiae, Molec. Gen. Genet., 192:466–470.PubMedCrossRefGoogle Scholar
  38. Kosower, N. S., 1979, The glutathione status of cells, Int. Rev. Cytol., 54:109–160.CrossRefGoogle Scholar
  39. Kuczuk, M. H., Benson, P. M., Heath, H., and Hayes, A. W., 1978, Evaluation of the mutagenic potential of mycotoxins using Salmonella typhimurium and Saccharomyces cerevisiae, Mutat. Res., 53:11–20.PubMedGoogle Scholar
  40. Lenz, W., 1970, “Medizinische Genetik,” Thieme Varlag, Stuttgart, 308 pages.Google Scholar
  41. Linnainmaa, K., Sorsa, M., Carlberg, G., Gripenberg, U., and Meretoja, T., 1977, Mutagenicity of Bacillus thuringiensis exotoxin. II. Submammalian tests, Hereditas, 85:113–122.CrossRefGoogle Scholar
  42. Marquardt, H., 1968, Somatische Genetik unter besonderer Berücksichtigung der Rekombinations-und Konversionsgenetik, Naturw.-Rdsch., 21:52–57.Google Scholar
  43. Marquardt, H., Zimmermann, F. K., and Schwaier, R., 1964, Die Wirkung krebsauslösender Nitrosamine and Nitrosamide auf das ad 6–45 Riickmutationssystem von Saccharomyces cerevlsiae, Z. Vererbungsl., 95:82–96.PubMedCrossRefGoogle Scholar
  44. Miller, J. A., and Miller, E. C., 1967, Mechanisms of chemical carcinogenesis: Nature of proximate carcinogens and interactions with macromolecules, Pharmacol. Rev., 18:805–838.Google Scholar
  45. Miller, E. C., and Miller, J. A., 1971, The mutagenicity of chemical carcinogens: Correlations, problems and interpretations, in: “Chemical Mutagens,” Vol. 1, A. Hollaender, ed., Plenum Press, New York, pp. 83–119.CrossRefGoogle Scholar
  46. Mortimer, R. K., and Schild, D., 1981, Genetic mapping in Saccharomyces cerevisiae, in: “The Molecular Biology of the Yeast Saccharomyces cerevisiae,” J. N. Strathern, E. W. Jones, and J. R. Broach, eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 641–652.Google Scholar
  47. Moustacchi, E., 1969, Cytoplasmic and nuclear genetic events induced by UV light in strains of Saccharomyces cerevisiae with different UV sensitivities, Mutat. Res., 7:171–185.PubMedCrossRefGoogle Scholar
  48. Ohno, S., 1974, Aneuploidy as a possible means employed by malignant cells to express recessive phenotypes, in: “Chromosomes and Cancer,” J. German, ed., John Wiley and Sons, New York, pp. 77–94.Google Scholar
  49. Parry, J. M., 1973, The induction of gene conversion in yeast by herbicide preparations, Mutat. Res., 21:83–91.PubMedCrossRefGoogle Scholar
  50. Parry, J. M., 1977, The use of yeast cultures for the detection of environmental mutagens using a fluctuation test, Mutat. Res., 46:165–176.PubMedGoogle Scholar
  51. Parry, J. M., and Zimmermann, F. K., 1976, The detection of monosomic colonies produced by mitotic chromosome non-disjunction in the yeast Saccharomyces cerevisiae, Mutat. Res., 36:49–66.PubMedCrossRefGoogle Scholar
  52. Parry, J. M., Sharp, D., Tippins, R. S., and Parry, E. M., 1979, Radiation-induced mitotic and meiotic aneuploidy in the yeast Saccharomyces cerevisiae, Mutat. Res., 61:37–55.PubMedCrossRefGoogle Scholar
  53. Petes, T. D., 1980, Molecular genetics of yeast, Ann. Rev. Biochem., 49:845–876.PubMedCrossRefGoogle Scholar
  54. Plewa, M. J., and Gentile, J. M., 1976, Mutagenicity of atrazine: A maize-microbe bioassay, Mutat. Res., 38:287–292.PubMedGoogle Scholar
  55. Plewa, M. J., and Gentile, J. M., 1982, The activation of chemicals into mutagens by green plants, in: “Chemical Mutagens,” Vol. 7, F. J. de Serres and A. Hollaender, eds., Plenum Press, New York, pp. 401–420.Google Scholar
  56. Plewa, M. J., Wagner, E. D., Gentile, G. J., and Gentile, J. M., 1984, An evaluation of the genotoxic properties of herbicides following plant and animal activation, Mutat. Res., 136:233–245.PubMedCrossRefGoogle Scholar
  57. Plischke, M. E., von Borstel, R. C., Mortimer, R. K., and Conn, W. E., 1976, Genetic markers and associated gene products in Saccharomyces cerevisiae, in: “Handbook of Biochemistry and Molecular Biology” third edition. Nucleic Acids, Vol. 2, G. Fasman, ed., CRC Press, Cleveland, Ohio, pp. 767–832.Google Scholar
  58. Prescott, D. M., 1975, “Methods in Cell Biology: Yeast Cells,”Vols. 11 and 12, Academic Press, New York, San Francisco, London, 395 pages.Google Scholar
  59. Puglisi, P. P., 1967, Mutagenic and antimutagenic effects of acridinium salts in yeast, Mutat. Res., 4:289–294.PubMedCrossRefGoogle Scholar
  60. Roman, H., 1955, A system selective for mutations affecting the synthesis of adenine in yeast, Comp. Rend. Lab. Carlsberg, Ser: Physiol., 26:299–314.Google Scholar
  61. Sankaranarayanan, N., and Murthy, M. S. S., 1979, Testing of some permitted food colours for the induction of gene conversion in diploid yeast, Mutat. Res., 67:309–314.PubMedCrossRefGoogle Scholar
  62. Sato, R., Omura, T., and Nishibayashi, H., 1965, Carbon monoxide-binding hemoprotein and NHDPH-specific flavoprotein in liver microsomes and their role in microsomal electron transfer, in: “Oxidases and Related Redox Systems,” T. E. King, M. Morrison, and H. S. Mason, eds., John Wiley and Sons, New York, pp. 861–878.Google Scholar
  63. Shahin, M. M., and von Borstel, R. C., 1977, Mutagenic and lethal effects of alpha-benzene hexachloride, dibutyl phthalate and trichloroethylene in Saccharomyces cerevisiae, Mutat. Res., 48:173–180.PubMedCrossRefGoogle Scholar
  64. Siebert, D., and Eisenbrand, G., 1974, Induction of mitotic gene conversion in Saccharomyces cerevisiae by N-nitrosated pesticides, Mutat. Res., 22:121–126.PubMedCrossRefGoogle Scholar
  65. Siebert, D., and Lemperle, E., 1974, Genetic effects of herbicides: Induction of mitotic gene conversion in Saccharomyces cerevisiae, Mutat. Res., 22:111–120.PubMedCrossRefGoogle Scholar
  66. Siebert, D., Zimmermann, F. K., and Lemperle, E., 1970, Genetic effects of fungicides, Mutat. Res., 10:533–543.PubMedCrossRefGoogle Scholar
  67. Simmon, V. F., and Kauhanen, K., 1978a,b, In vitro microbiological mutagenicity assays of dieldrin, Report (LSU-5612), 14 pages.Google Scholar
  68. Simmon, V. F., and Kauhanen, K., 1978c, In vitro microbiological mutagenicity assays of DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane), Report (LSU-5612), 14 pages.Google Scholar
  69. Simmon, V. F., Mitchell, A. D., and Jorgenson, T. A., 1977, Evaluation of selected pesticides as chemical mutagens in in vitro and in vivo studies, Report (EPA-600/1-77-028), 239 pages.Google Scholar
  70. Simmon, V. F., Poole, D. C., Mitchell, A. D., and Robinson, D. E., 1978, In vitro microbiological mutagenicity and unscheduled DNA synthesis studies of eighteen pesticides, Report (SRI LSU-3493), 156 pages.Google Scholar
  71. Simmon, V. F., Riccio, E. S., Robinson, D. E., and Mitchell, A. D., 1979, In vitro microbiological mutagenicity and unscheduled DNA synthesis studies of fifteen pesticides, Final Report Phase III (SRI LSU-3493), 171 pages.Google Scholar
  72. Singh, I., Lusby, A. F., and McGuire, P. M., 1982, Mutagenicity of HPLC fractions from extracts of AATREX-treated corn, Environ. Mutagen., 4:45–53.PubMedCrossRefGoogle Scholar
  73. Smirnov, M. N., Smirnov, V. N., Budowsky, E. I., Inge-Vechtomov, S. G., and Serebrjakov, N. G., 1967, Red pigment of adenine-deficient yeast Saccharomyces cerevisiae, Biochem. Biophys. Res. Comm., 27:299–304.PubMedCrossRefGoogle Scholar
  74. Sora, S., Panzeri, L., Lucchini Bonomini, G., and Carbone, M. L., 1979a, Saccharomyces cerevisiae — Mutazione genica, in: “Mutagenesi Ambientale Methodiche di Analisi,” Vol. I, “Test in vitro,” G. E. Magni, ed., Consiglio Nazionale delle Ricerche, AQ/1/18-34, Roma, Italy, pp. 123–140.Google Scholar
  75. Sora, S., Panzeri, L., Lucchini Bonomini, G., and Carbone, M. L., 1979b, Saccharomyces cerevisiae — Conversione genica mitotica e crossing over mitotico, in: “Mutagenesi Ambientale Methodiche di Analisi,” Vol. I, “Test in vitro,” G. E. Magni, ed., Consiglio Nazionale delle Ricerche, AQ/1/18-34, Roma, Italy, pp. 141-168.Google Scholar
  76. Strathern, J. N., Jones, E. W., and Broach, J. R., 1981, “The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance,” Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 680 pages.Google Scholar
  77. von Borstel, R. C., 1966, Effects of radiation on cells, in: “The Biological Basis of Radiation Therapy,” Emmanuel E. Schwartz, ed., Lippincott Co., Philadelphia, pp. 60–125.Google Scholar
  78. von Borstel, R. C., and Hastings, P. J., 1980, DNA repair and mutagen interaction in Saccharomyces — Theoretical considerations, in: “DNA Repair and Mutagenesis in Eukaryotes,” W. M. Generoso, M. D. Shelby, and F. J. de Serres, eds., Plenum Press, New York, pp. 159–167.Google Scholar
  79. von Borstel, R. C., 1981, The yeast Saccharomyces cerevisiae: An assay organism for environmental mutagens, in: “Short-Term Tests for Chemical Carcinogens,” H. Stich and R. H. C. San, eds., Springer-Verlag, Berlin and New York, pp. 161–174.CrossRefGoogle Scholar
  80. Waters, M. D., Nesnow, S., Simmon, V. F., Mitchell, A. D., Jorgenson, T. A., and Valencia, R., 1981, Pesticides: Mutagenic and carcinogenic potential, ACS Symp. Ser., 160:89–113.CrossRefGoogle Scholar
  81. Waters, M. D., Simmon, V. F., Mitchell, A. D., Jorgenson, and Valencia, R., 1980, Overview of short-term tests for the mutagenic and carcinogenic potential of pesticides, Part B, J. Environ. Sci. Health, 15:867–906.CrossRefGoogle Scholar
  82. Wheatcroft, R., Cox, B. S., and Haynes, R. H., 1975, Repair of UV-induced DNA damage and survival in yeast. I. Dimer excision, Mutat. Res., 30:209–218.PubMedGoogle Scholar
  83. Whelan, W.L., Gocke, E., and Manney, T. R., 1979, The CAN1 locus of Saccharomyces cerevisiae: Fine-structure analysis and forward mutation rates, Genetics, 91:35–51.PubMedGoogle Scholar
  84. Wild, D., 1975, Mutagenicity studies on organophosphorus insecticides, Mutat. Res., 32:133–150.PubMedGoogle Scholar
  85. Wiseman, A., and Woods, L. F. J., 1979, Benzo(a)pyrene metabolites formed by the action of yeast cytochrome P-450/P-448, J. Chem. Tech. Biotechnol., 29:320–324.Google Scholar
  86. Woods, L. F. J., and Wiseman, A., 1980, Benzo(a)pyrene hydroxylase from Saccharomyces cerevisiae: Substrate binding, spectral and kinetic data, Biochim. Biophys. Acta, 613:52–61.PubMedGoogle Scholar
  87. Wright, A. S., 1980, The role of metabolism in chemical mutagenesis and chemical carcinogenesis, Mutat. Res., 75:215–241.PubMedGoogle Scholar
  88. Yadav, A. S., Vashisat, R. K., and Kakar, S. N., 1982, Testing of endosulfan and fenitrothion for genotoxicity in Saccharomyces cerevisiae, Mutat. Res., 105:403–407.PubMedCrossRefGoogle Scholar
  89. Yoshida, Y., Kumaoka, H., and Sato, R., 1974, Studies on the microsomal electron-transport system of anaerobically grown yeast. I. Intracellular localisation and characterisation, J. Bioehem., 75:1201–1210.Google Scholar
  90. Zetterberg, G., Busk, L., Elovson, R., Starec-Nordenhammar, I., and Ryttman, H., 1977, The influence of pH on the effects of 2,4-D (2,4-dichlorophenoxyacetic acid, Na salt) on Saccharomyces cerevisiae and Salmonella typhimurium, Mutat. Res., 42:3–18.PubMedCrossRefGoogle Scholar
  91. Zimmermann, F. K., 1969, Genetic effects of polynuclear hydrocarbons: Induction of mitotic gene conversion, Z. Krebs-forsch., 72:65–71.CrossRefGoogle Scholar
  92. Zimmermann, F. K., 1973a, Detection of genetically active chemicals using various yeast systems, in: “Chemical Mutagens,” Vol. 3, A. Hollaender, ed., Plenum Press, New York, pp. 209–240.CrossRefGoogle Scholar
  93. Zimmermann, F. K., 1973b, A yeast strain for visual screening for the two reciprocal products of mitotic crossingover, Mutat. Res., 21:263–269.PubMedCrossRefGoogle Scholar
  94. Zimmermann, F. K., 1975, Procedures used in the induction of mitotic recombination and mutation in the yeast Saccharomyces cerevisiae, Mutat. Res., 31:71–86.PubMedGoogle Scholar
  95. Zimmermann, F. K., and Schwaier, R., 1967, Induction of mitotic gene conversion with nitrous acid, 1-methyl-3-nitro-1-nitroso-guanidine and other alkylating agents in Saccharomyces cerevisiae, Molec. Gen. Genet., 100:63–76.PubMedCrossRefGoogle Scholar
  96. Zimmermann, F. K., Kern, R., and Rasenberger, H., 1975, A yeast strain for simultaneous detection of induced mitotic crossing over, mitotic gene conversion and reverse mutation, Mutat. Res., 28:381–388.CrossRefGoogle Scholar
  97. Zimmermann, F. K., Schwaier, R., and von Laer, U., 1966, Mitotic recombination induced in Saccharomyces cerevisiae with nitrous acid, diethylsulfate and carcinogenic alkylating nitrosamines, Z. Vererbungsl., 98:230–246.PubMedCrossRefGoogle Scholar
  98. Zimmermann, F. K., von Borstel, R. C., Von Halle, E. S., Parry, J. M., Siebert, D., Zetterberg, G., Barale, R., and Loprieno, N., 1984, Testing of chemicals for genetic activity with Saccharomyces cerevisiae: A report of the U.S. Environmental Protection Agency Gene-Tox Program, Mutat. Res., 133:199–244.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Friederike Eckardt
    • 1
    • 2
  • R. C. von Borstel
    • 1
    • 2
  1. 1.Abteilung für StrahlenbiologieGesellschaft für Strahlen- und UmweltforschungNeuherberg bei MünchenFederal Republic of Germany
  2. 2.Department of GeneticsUniversity of AlbertaEdmontonCanada

Personalised recommendations