Polysubstrate Monooxygenases in Drosophila, Mammals and Man

  • F. E. Würgler
Part of the Basic Life Sciences book series


There is overwhelming evidence that polysubstrate monooxygenases play a central role in the metabolism of endogenous compounds as well as in the biotransformation of xenobiotics. These enzyme systems are of great importance in such diverse fields as insecticide resistance, mutagenicity, carcinogenicity, drug metabolism, etc. The constitutive and, in particular, the induced forms represent various products from a multigene family. This has first been shown for the mouse, but evidence is accumulating that this is also true for other mammals and for man. Also in insects a similar picture is emerging. If the regulation of cytochrome P-450 induction resembles in any way the other methods by which prokaryotes and eukaryotes cope genetically with the many forms of environmental selective pressures, it is very likely that most organisms have the genetic capacity to produce not only hundreds but probably thousands of inducible forms of cytochrome P-450 (Nebert et al., 1981). Doubtless, many fields from pest control to cancer prevention to drug safety will profit from the elucidation of the genetic mechanisms involved.


Insecticide Resistance Xenobiotic Metabolism Styrene Oxide Monooxygenase Activity Piperonyl Butoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agosin, M., 1976, Insect cytochrome P-450, Molec. Cell. Biochem., 12:33–44.PubMedCrossRefGoogle Scholar
  2. Alvares, A. P., Anderson, K. E, Conney, A. H., and Kappas, A., 1976, Interactions between nutritional factors and drug biotransformations in man, Proc. Natl. Acad. Sci. USA, 73:2501–2504.PubMedCrossRefGoogle Scholar
  3. Anderson, K. E., Conney, A. H., and Kappas, A., 1979, Nutrition and oxidative drug metabolism in man: Relative influence of dietary lipids, carbohydrate, and protein, Clin. Pharmacol. Ther., 26:493–501.PubMedGoogle Scholar
  4. Baars, A. J., 1979, Xenobiotica-metabolizing enzymes in the fruitfly Drosophila melanogaster and the albino rat with emphasis on glutathione S-transferase, Ph.D. Thesis, Leiden, 154 pages.Google Scholar
  5. Baars, A. J., 1980, Biotransformation of xenobiotics in Drosophila melanogaster and its relevance for mutagenicity testing, Drug Metab. Rev., 11:191–221.PubMedCrossRefGoogle Scholar
  6. Baars, A. J., Blijleven, W. G. H., Mohn, G. R., Natarajan, A. T., and Breimer, D. D., 1980, Preliminary studies on the ability of Drosophila microsomal preparations to activate mutagens and carcinogens, Mutat. Res., 72:257–264.PubMedCrossRefGoogle Scholar
  7. Baars, A. J., Jansen, M., and Breimer, D. D., 1979, Xenobiotica-metabolizing enzymes in Drosophila melanogaster: Activities of epoxide hydratase and glutathione S-transferase compared with similar activities in rat liver, Mutat. Res., 62:279–291.PubMedCrossRefGoogle Scholar
  8. Baars, A. J., Zijlstra, J. A., Vogel, E., and Breimer, D. D., 1977, The occurrence of cytochrome P-450 and aryl hydrocarbon hydroxylase activity in Drosophila melanogaster microsomes, and the importance of this metabolizing capacity for the screening of carcinogenic and mutagenic properties of foreign compounds, Mutat. Res., 44:257–268.PubMedCrossRefGoogle Scholar
  9. Blijleven, W. G. H., and Vogel, E., 1977, The mutational spectrum of procarbazine in Drosophila melanogaster, Mutat. Res., 45:47–59.PubMedCrossRefGoogle Scholar
  10. Bochnig, U., 1954, Genetische Untersuchungen zur DDT-Resistenz an Drosophila melanogaster, Zeitschr. f. indukt. Abstamm.-& Vererbungsl., 86:185–209.CrossRefGoogle Scholar
  11. Brewen, B., and Nix, C. E., 1977, In vitro metabolic activation by Drosophila melanogaster microsomes, Mutat. Res., 53:67–68.Google Scholar
  12. Brown, A. W. A., 1967, Insecticide resistance — genetic implications and applications, World Rev. Pest Control, 6:104–114.Google Scholar
  13. Casida, J. E., 1969, Insect microsomes and insecticide chemical oxidation, in: “Microsomes and Drug Oxidations,” J. R. Gillette, A. H. Conney, G. J. Cosmides, R. W. Estabrook, J. R. Fouts, and G. J. Mannering, eds., Academic Press, New York, pp. 517–531.Google Scholar
  14. Clark, A. M., 1959, Mutagenic activity of the alkaloid heliotrine in Drosophila, Nature, 183:731–732.PubMedCrossRefGoogle Scholar
  15. Clark, A. M., 1963, The brood pattern of sensitivity of the Drosophila testis to the mutagenic action of heliotrine, Zeitschr. f. indukt. Abstamm.-& Vererbungsl., 94:115–120.CrossRefGoogle Scholar
  16. Cohen, B. S., and Estabrook, R. W., 1971, Microsomal electron transport reactions, II. The use of reduced triphosphopyridine nucleotide and/or reduced diphosphopyridine nucleotide for the oxidative N-demethylation of aminopyrine and other drug substrates, Arch. Biochem. Biophys., 143:46–53.PubMedCrossRefGoogle Scholar
  17. Conney, A. H., 1980, Microsomes and drug oxidations: Perspectives and challenges, in: “Microsomes, Drug Oxidations and Chemical Carcinogenesis,” Vol. 2, M. J. Coon, A. H. Conney, R. W. Estabrook, H. V. Gelboin, J. R. Gillette, and P. J. O’Brien, eds., Academic Press, New York, pp. 1103–1118.Google Scholar
  18. Conney, A. H., and Levin, W., 1974, Carcinogen metabolism in experimental animals and man, in: “Chemical Carcinogenesis Essays,” R. Montesano, and L. Tomatis, eds., International Agency for Research on Cancer, Lyon, France, pp. 3–24.Google Scholar
  19. Conney, A. H., and W. Levin, 1982, Pharmacological and toxicological implication of multiple cytochromes P-450, in: “Biochemical Immunological Pharmacology, Advances in Pharmacology and Therapeutics, II,” Vol. 4, H. Yoshida, Y. Hagihara, and S. Ebashi, eds., Pergamon Press, Oxford, pp. 99–118.Google Scholar
  20. Conney, A. H., Pantuck, E. J., Hsiao, K.-C, Garland, W. A., Anderson, K. E., Alvares, A. P., and Kappas, A., 1976, Enhanced phenacetin metabolism in human subjects fed charcoal-broiled beef, Clin. Pharmacol. Ther., 20:633–642.PubMedGoogle Scholar
  21. Conney, A. H., Welch, R., Kuntzman, R., Chang, R., Jacobson, M., Munro-Faure, A. D., Peck, A. W., Bye, A., Poland, A., Poppers, P. J., Finster, M., and Wolff, J. A., 1971, Effects of environmental chemicals on the metabolism of drugs, carcinogens and normal body constituents in man, Ann. N.Y. Acad. Sci., 179:155–172.PubMedCrossRefGoogle Scholar
  22. Crow, J. F., 1957, Genetics of insect resistance to chemicals, Ann. Rev. Ent., 2:227–246.CrossRefGoogle Scholar
  23. Dapkus, D., and Merrell, D. J., 1977, Chromosomal analysis of DDT-resistance in a long-term selected population of Drosophila melanogaster, Genetics, 87:685–697.PubMedGoogle Scholar
  24. Donner, M., Sorsa, M., and Vainio, H., 1979, Recessive lethals induced by styrene and styrene oxide in Drosophila melanogaster, Mutat. Res., 67:373–376.PubMedCrossRefGoogle Scholar
  25. Drouillard, D. D., Vesell, E. S., and Dvorchik, B. H., 1978, Studies on theobromine disposition in normal subjects. Alterations induced by dietary abstention from or exposure to methyl-xanthines, Clin. Pharmacol. Ther., 23:296–302.PubMedGoogle Scholar
  26. Fahl, W. E., Nesnow, S., and Jefcoate, C. R., 1977, Microsomal metabolism of benzo(a)pyrene. Multiple effects of epoxide hydrase inhibitors, Arch. Biochem. Biophys., 181:649–664.PubMedCrossRefGoogle Scholar
  27. Fahl, W. E., Shen, A. L., Keller, G., and Jefcoate, C. R., 1979, Regulation of DNA modification by selective conjugation of benzo(a)pyrene metabolites, Proceedings of the 4th International Symposium on Microsomes and Drug Oxidations, p. 63.Google Scholar
  28. Fahmy, O. G., and Fahmy, M. J., 1975, Mutagenic selectivity of carcinogenic nitroso compounds, II: N,N-Dimethylnitrosamine, Chem.-Biol. Interactions, 11:395–412.CrossRefGoogle Scholar
  29. Förster, R. E., 1982, In vitro Unter suchungen über den Metabolismus von Aflatoxin B1 und Aldrin in Hodengewebe von genetisch verschiedenen Stämmen von Drosophila melanogaster, Dissertation ETH-Zürich Nr. 7081, ADAG Administration & Druck AG, Zürich, 101 pages.Google Scholar
  30. Frohofer, H., 1971, Mikrobe Stimmung von Kohlenstoff, sowie von 14C Tritium und Deuterium im Stickstoffstrom, Z. Anal. Chem., 253:97–102.CrossRefGoogle Scholar
  31. Guengerich, F. P., 1978, Separation and purification of multiple forms of microsomal cytochrome P-450. Partial characterization of three apparently homogenous cytochromes P-450 prepared from livers of phenobarbital-and 3-methylcholanthrene-treated rats, J. Biol. Chem., 253:7931–7939.PubMedGoogle Scholar
  32. Hällström, I., and Grafström, R., 1981, The metabolism of drugs and carcinogens in isolated subcellular fractions of Drosophila melanogaster, II: Enzyme induction and metabolism of benzo-(a)pyrene, Chem.-Biol. Interactions, 34:145–159.CrossRefGoogle Scholar
  33. Hällström, I., Magnusson, J., and Ramel, C., 1982, Relation between the somatic toxicity of dimethylnitrosamine and a genetically determined variation in the level and induction of cytochrome P-450 in Drosophila melanogaster, Mutat. Res., 92:161–168.PubMedCrossRefGoogle Scholar
  34. Hällström, I., Sundvall, A., Rannung, U., Grafström, R., and Ramel, C., 1981, The metabolism of drugs and carcinogens in isolated subcellular fractions of Drosophila melanogaster, I: Activation of vinyl chloride, 2-aminoanthracene and benzo(a)pyrene as measured by mutagenic effects in Salmonella typhimurium, Chem.-Biol. Interactions, 34:129–143.CrossRefGoogle Scholar
  35. Hildebrandt, A., and Estabrook, R. W., 1971, Evidence for the participation of cytochrome b5 in hepatic microsomal mixed-function oxidase reactions, Arch. Biochem. Biophys., 143:66–79.PubMedCrossRefGoogle Scholar
  36. Holzer, C. N., 1981, Untersuchungen über Metabolismus und Mutagen-ität von Nitrosaminen und Aflatoxin B1 in Drosophila melanogaster, Dissertation ETH-Zürich Nr. 6893, ADAG Administration & Druck AG, Zürich, 84 pages.Google Scholar
  37. Idle, J. R., Mahgoub, A., Sloan, T. P., Smith, R. L., Mbanefo, C. O., and Bababunmi, E. A., 1981, Sone observations on the oxidation. phenotype status of Nigerian patients presenting with cancer, Cancer Letters, 11:331–338.PubMedCrossRefGoogle Scholar
  38. Jacobson, M., Levin, W., Poppers, P. J., Wood, A. W., and Conney, A. H., 1974, Comparison of the O-dealkylation of 7-ethoxycoumarin and the hydroxylation of benzo(a)pyrene in human placenta: Effect of cigarette smoking, Clin. Pharmacol. Ther., 16:701–710.PubMedGoogle Scholar
  39. Jerina, D. M., Yagi, H., Thakker, D. R., Lehr, R. E., Wood, A. W., Levin, W., and Conney, A. H., 1980, Bay region activation of polycyclic aromatic hydrocarbons to ultimate mutagens and carcinogens, in: “Microsomes, Drug Oxidations and Chemical Carcinogenesis,” M. J. Coon, A. H. Conney, R. W. Estabrook, H. V. Gelboin, J. R. Gillette, and P. J. O’Brien, eds., Academic Press, New York, pp. 1041–1049.Google Scholar
  40. Kapitulnik, J., Levin, W., Poppers, P. J., Tomaszewski, J. E., Jerina, D. M., and Conney, A. H., 1976, Comparison of the hydroxylation of zoxazolamine and benzo(a)pyrene in human placenta: Effect of cigarette smoking, Clin. Pharmacol. Ther., 20:557–564.PubMedGoogle Scholar
  41. Kapitulnik, J., Poppers, P. J., and Conney, A. H., 1977, Comparative metabolism of benzo(a)pyrene and drugs in human liver, Clin. Pharmacol. Ther., 21:166–176.PubMedGoogle Scholar
  42. Kappas, A., Alvares, A. P., Anderson, K. E., Pantuck, E. J., Pantuck, C. B., Chang, R., and Conney, A. H., 1978, Effect of charcoal-broiled beef on antipyrine and theophylline metabolism, Clin. Pharmacol. Ther., 23:445–450.PubMedGoogle Scholar
  43. Kappas, A., Anderson, K. E., Conney, A. H., Alvares, A. P., 1976, Influence of dietary protein and carbohydrate on antipyrine and theophylline metabolism in man, Clin. Pharmacol. Ther., 20:643–653.PubMedGoogle Scholar
  44. Kikkawa, H., 1961, Genetical studies on the resistance to parathion in Drosophila melanogaster, I, Gene analyses. Annual Report of Scientific Works, Faculty of Science, Osaka University, 9:1-20.Google Scholar
  45. Kikkawa, H., 1964, The genetic study on the resistance to Sevin in Drosophila melanogaster, Botyu-Kagaku, 29:42–46.Google Scholar
  46. Kulkarni, A. P., and Hodgson, E., 1980, Metabolism of insecticides by mixed-function oxydase systems, Pharmacol. Ther., 8:379–475.PubMedCrossRefGoogle Scholar
  47. Kulkarni, A. P., Hodgson, E., and Smith, E., 1976, Occurrence and characterization of microsomal cytochrome P-450 in several vertebrate and insect species, Comp. Biochem. Physiol., 54B:509–513.Google Scholar
  48. Lang, M. A., and Nebert, D. W., 1981, Structural gene products of the Ah complex. Evidence for many unique P-450-mediated monooxygenase activities reconstituted from 3-methylchol-anthrene-treated mouse liver microsomes, J. Biol. Chem., 256:12058–12067.PubMedGoogle Scholar
  49. Lindsay, R. J., and Clark, A. M., 1978, The effect of the microsomal enzyme inhibitor, piperonyl butoxide, on mutagenesis in Drosophila melanogaster, Mutat. Res., 53:221.Google Scholar
  50. Lu, A. Y. H., 1979, Multiplicity of liver drug metabolizing enzymes, Drug Met. Rev., 10(2):187–208.CrossRefGoogle Scholar
  51. Lu, A. Y. H., and Levin, W., 1974, The resolution and reconstitution of the liver microsomal hydroxylation system, Biochim. Biophys. Acta, 344:205–240.PubMedGoogle Scholar
  52. Magee, P. N., and Montesano, R., 1974, Comparative metabolism in vitro of nitrosamines in various animal species, including man, in: “Chemical Carcinogen Assays,” R. Montesano, and L. Tomatis, eds., International Agency for Research on Cancer, Scientific Publ. No. 10, pp. 39-55.Google Scholar
  53. Magnusson, J., and Ramel, C., 1978, Mutagenic effects of vinyl chloride on Drosophila melanogaster with and without pretreatment with sodium phenobarbiturate, Mutat. Res., 57:307–312.PubMedGoogle Scholar
  54. Magnusson, J., Hällström, I., and Ramel, C., 1979, Studies on metabolic activation of vinyl chloride in Drosophila melanogaster after pretreatment with phenobarbital and polychlorinated biphenyls, Chem.-Biol. Interactions, 24:287–298.CrossRefGoogle Scholar
  55. McCann, J., and Ames, B. N., 1977, The Salmonella/microsome mutagenicity test: Predictive value for animal carcinogenicity, in: “Origins of Human Cancer,” H. H. Hiatt, J. D. Watson, and J. A. Winsten, eds. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 1431–1450.Google Scholar
  56. Miller, E. C., 1978, Some current perspectives on chemical carcino-genesis in humans and experimental animals: Presidential address, Cancer Res., 38:1479–1496.PubMedGoogle Scholar
  57. Monks, T. J., Caldwell, J., and Smith, R. L., 1979, Influence of methylxanthine-containing foods on theophylline metabolism and kinetics, Clin. Pharmacol. Ther., 26:513–524.PubMedGoogle Scholar
  58. Nebert, D. W., 1979, Multiple forms of inducible drug-metabolizing enzymes. A reasonable mechanism by which any organism can cope with adversity, Mol. Cell. Biochem., 27:27–46.PubMedCrossRefGoogle Scholar
  59. Nebert, D. W., 1980, Pharmacogenetics: An approach to understanding chemical and biologic aspects of cancer, J. Natl. Cancer Inst., 64:1279–1290.PubMedGoogle Scholar
  60. Nebert, D. W., and Jensen, N. M., 1979, The Ah locus: Genetic regulation of the metabolism of carcinogens, drugs and other environmental chemicals by cytochrome P-450-mediated mono-oxygenases, in: “CRC Critical Reviews in Biochemistry 6,” G. D. Fasman, ed., CRC Press, Cleveland, Ohio, pp. 401–437.Google Scholar
  61. Nebert, D. W., Considine, N., and Owens, I. S., 1973, Genetic expression of aryl hydrocarbon hydroxylase induction, VI. Control of other aromatic hydrocarbon-inducible monooxygenase activities at or near the same genetic locus, Arch. Biochem. Biophys., 157:148–159.PubMedCrossRefGoogle Scholar
  62. Nebert, D. W., Eisen, H. J., Negishi, M., Lang, M. A., and Hjelmeland, L. M., 1981, Genetic mechanisms controlling the induction of polysubstrate monooxygenase (P-450) activities, Ann. Rev. Pharmacol. Toxicol., 21:431–462.CrossRefGoogle Scholar
  63. Nigsch, J., 1978, DDT-Resistenz und Nitrosamin-Empfindlichkeit genetisch verschiedener Stämme von Drosophila melanogaster, Dissertation ETH-Zürich Nr. 6297, unveröffentlicht.Google Scholar
  64. Nix, C. E., Brewen, B., and Epler, J. L., 1981, Microsomal activation of selected polycyclic aromatic hydrocarbons and aromatic amines in Drosophila melanogaster, Mutat. Res., 88:291–299.PubMedCrossRefGoogle Scholar
  65. Ogaki, M., and Tsukamoto, M., 1953, Genetical analysis of DDT resistance in some Japanese strains of Drosophila melanogaster, Botyu-Kagaku, 18:100–104.Google Scholar
  66. Ogita, Z., 1958, The genetical relation between resistance to insecticides in general and that to phenylthiourea (PTU) and phenylurea (PU) in Drosophila melanogaster, Botyu-Kagaku, 23:188–205.Google Scholar
  67. Okey, A. B., Bond, G. P., Mason, M. E., Kahl, G. F., Eisen, H. J., Guenthner, T. M., and Nebert, D. W., 1979, Regulatory gene product of the Ah locus. Characterization of the cytosolic inducer-receptor complex and evidence for its nuclear translocation, J. Biol. Chem., 254:1636–1648.Google Scholar
  68. Omura, T., and Sato, R., 1962, A new cytochrome in liver microsomes, J. Biol. Chem., 237:1375–1376.PubMedGoogle Scholar
  69. Oshima, C., 1954, Genetical studies on DDT resistance in populations of Drosophila melanogaster, Botyu-Kagaku, 19:93–100.Google Scholar
  70. Pantuck, E. J., Pantuck, C. B., Garland, W. A., Min, B., Wattenberg, L. W., Anderson, K. E., Kappas, A., and Conney, A. H., 1979, Stimulatory effect of dietary Brussels sprouts and cabbage on human drug metabolism, Clin. Pharmacol. Ther., 25:88–95.PubMedGoogle Scholar
  71. Pasternak, L., 1962, Mutagene Wirkung von Dimethylnitrosamin bei Drosophila melanogaster, Naturwiss., 49:381.CrossRefGoogle Scholar
  72. Pasternak, L., 1964, Untersuchungen über die mutagene Wirkung verschiedener Nitrosamin-Nitrosamid-Verbindungen, Arzneimittelforseh., 14:802–804.Google Scholar
  73. Patil, V. L., and Guthrie, F. E., 1979, Cuticular lipids of two resistant and a susceptible strain of houseflies, Pest. Sci., 10:399–406.CrossRefGoogle Scholar
  74. Poland, A. P., Glover, E., Robinson, J., and Nebert, D. W., 1974, Genetic expression of aryl hydrocarbon hydroxylase activity. Induction of monooxygenase activities and cytochrome P1-450 formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice genetically “nonresponsive” to other aromatic hydrocarbons, J. Biol. Chem., 249:5599–5606.PubMedGoogle Scholar
  75. Ray, J. W., 1967, The epoxidation of aldrin by housefly microsomes and the inhibition by carbon monoxide, Biochem. Pharmacol., 16:99–107.CrossRefGoogle Scholar
  76. Rogan, E. G., and Cavalieri, E., 1976, Metabolic activation in purified rat liver nuclei, Proc. Natl. Acad. Sci., USA, 73:457–461.PubMedCrossRefGoogle Scholar
  77. Sawiki, R. M., and Lord, K. A., 1970, Some properties of a mechanism delaying penetration of insecticides into houseflies, Pest. Sci., 1:213–217.CrossRefGoogle Scholar
  78. Sims, P., Grover, P. L., Swaisland, A., Pal, K., and Hewer, A., 1974, Metabolic activation of benzo(a)pyrene proceeds by a diolepoxide, Nature, 252:326–328.PubMedCrossRefGoogle Scholar
  79. Tates, A. D., 1971, Cytodifferentiation during spermatogenesis in Drosophila melanogaster, Ph.D. thesis, university of Leiden, The Netherlands.Google Scholar
  80. Thomas, P. E., Lu, A. Y. H., Ryan, D., West, S. B., Kawalek, J., and Levin, W., 1976, Immunochemical evidence for six forms of rat liver cytochrome P450 obtained using antibodies against purified rat liver cytochrome P450 and P448, Mol. Pharmacol., 12:746–758.PubMedGoogle Scholar
  81. Tsukamoto, M., 1961, Metabolic fate of DDT in Drosophila melanogaster, III: Comparative studies, Botyu-Kagaku, 26:74–87.Google Scholar
  82. Tsukamoto, M., and Ogaki, M., 1954, Gene analysis of resistance to DDT and BHC in Drosophila melanogaster, Botyu-Kagaku, 19:25–32.Google Scholar
  83. Vadi, H., Moldéus, P., Capdevila, J., and Orrenius, S., 1975, The metabolism of benzo(a)pyrene in isolated rat liver cells, Cancer Res., 35:2083–2091.PubMedGoogle Scholar
  84. Vatsis, K. P., Deutsch, J., Gelboin, H. V., and Coon, M. J., 1980, Catalytic activity and stereospecificity of phenobarbital-inducible and 5,6-benzo(a)pyrene and trans-7,8-dihydroxy-7,8-dehydrobenzo(a)pyrene, in: “Microsomes, Drug Oxidations, and Chemical Carcinogenesis,” M. J. Coon, A. H. Conney, R. W. Estabrook, H. V. Gelboin, J. R. Gillette, and P. J. O’Brien, eds., Academic Press, New York, pp. 1065–1077.Google Scholar
  85. Viviani, A., von Däniken, A., Schlatter, Ch., and Lutz, W. K., 1980, Effect of selected induction of microsomal and nuclear aryl hydrocarbon monooxygenase and epoxide hydrolase as well as cytoplasmic glutathione S-epoxide transferase on the covalent binding of the carcinogen benzo(a)pyrene to rat liver DNA in vivo, J. Cancer Res. Clin. Oncol., 98:139–152.PubMedCrossRefGoogle Scholar
  86. Vogel, E., 1980, Genetic relationship between resistance to insecticides and procarcinogens in two Drosophila populations, Arch. f. Toxicol., 43:201–211.CrossRefGoogle Scholar
  87. Vogel, E., 1981, Recent achievements with Drosophila as an assay system for carcinogens, in: “Short-Term Tests for Chemical Carcinogens,” H. F. Stich, and R. H. C. San, eds., Springer-Verlag, New York, pp. 379–398.CrossRefGoogle Scholar
  88. Vogel, E., and Leigh, B., 1975, Concentration-effect studies with MMS, TEB, 2,4,6-triCl-PDMT, and DEN on the induction of dominant lethals, recessive lethals, chromosome loss and translocations in Drosophila sperm, Mutat. Res., 29:221–228.CrossRefGoogle Scholar
  89. Vogel, E., and Sobels, F. H., 1976, The function of Drosophila in genetic toxicology testing, in: “Chemical Mutagens: Principles and Methods for their Detection,” Vol. 4, A. Hollaender, ed., Plenum Press, New York, pp. 93–142.Google Scholar
  90. Vogel, E., Blijleven, W. G. H., Klapwijk, P. M., and Zijlstra, J. A., 1980, Some current perspectives of the application of Drosophila in the evaluation of carcinogens, in: “The Predictive Value of Short-Term Screening Tests in Carcinogenicity,” G. M. Williams, R. Kroes, H. W. Waaijers, and K. W. van de Poll, eds., Elsevier, Amsterdam, pp. 125–147.Google Scholar
  91. Vogel, E. W., Blijleven, W. G. H., Kortselius, M. J. H., and Zijlstra, J. A., 1982, A search for some common characteristics of the effects of chemical mutagens in Drosophila, Mutat. Res., 92:69–87.PubMedCrossRefGoogle Scholar
  92. Vogel, E. W., Zijlstra, J. A., and Blijleven, W. G. H., 1983, Mutagenic activity of selected aromatic amines and polycyclic hydrocarbons in Drosophila melanogaster, Mutat. Res., 107:53–77.PubMedCrossRefGoogle Scholar
  93. Welch, R. M., Harrison, Y. E., Gommi, B. W., Poppers, P. J., Finster, M., and Conney, A. H., 1969, Stimulatory effect of cigarette smoking on the hydroxylation of 3,4-benzpyrene and the N-demethylation of 3-methyl-4-monomethylaminoazobenzene by enzymes in human placenta, Clin. Pharmacol. Ther., 10:100–109.PubMedGoogle Scholar
  94. Wilkinson, C. F., and Brattsten, L. B., 1972, Microsomal drug metabolizing enzymes in insects, Drug Metabol. Rev., 1:152–228.CrossRefGoogle Scholar
  95. Zijlstra, J. A., Vogel, E., and Breimer, D. D., 1979, Occurrence and inducibility of cytochrome P-450 and mixed-function oxidase activities in microsomes from Drosophila melanogaster larvae, Mutat. Res., 64:151–152 (Abstract).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • F. E. Würgler
    • 1
  1. 1.Institute of ToxicologySwiss Federal Institute of Technology and University of ZürichSchwerzenbach near ZürichSwitzerland

Personalised recommendations