Advertisement

Synthesis of Hybridization Probes and RNA Substrates with SP6 RNA Polymerase

  • P. A. Krieg
  • M. R. Rebagliati
  • M. R. Green
  • D. A. Melton
Part of the Genetic Engineering: Principles and Methods book series (GEPM, volume 7)

Abstract

Single-stranded RNA molecules of defined sequence are useful as substrates for the investigation of such cellular processes as RNA processing and translation, and when highly labeled they serve as extremely efficient hybridization probes. An in vitro transcription system based on the unusual properties of SP6 RNA polymerase facilitates the synthesis of homogeneous single-stranded RNA molecules of any desired sequence. In this chapter we describe the SP6 transcription reaction in detail and point out the advantages and disadvantages of the use of single-stranded RNA molecules as substrates and as hybridization probes. In addition, we review recent studies on the use of SP6 transcripts as anti-sense RNAs that can hybridize to mRNAs in vivo and thereby block translation of a particular gene product.

Keywords

Hybridization Probe Ribonucleoside Triphosphate RNase Mapping Vector pSP64 Exon Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roberts, J.W. (1969) Nature 224, 1168–1174.PubMedCrossRefGoogle Scholar
  2. 2.
    Blattner, F. and Dahlberg, J. (1972) Nature 237, 227–232.CrossRefGoogle Scholar
  3. 3.
    Rosenberg, M., Weissman, S. and DeCrombrugghe, B. (1975) J. Biol. Chem. 250, 4755–4764.PubMedGoogle Scholar
  4. 4.
    Roberts, B., Gorecki, M., Mulligan, R., Danna, K., Rozenblatt, S. and Rich, A. (1975) Proc. Nat. Acad. Sci. U.S.A. 72, 1922–1926.CrossRefGoogle Scholar
  5. 5.
    Patterson, B. and Rosenberg, M. (1979) Nature 279, 692–696.CrossRefGoogle Scholar
  6. 6.
    Manley, J., Fire, A., Cano, A., Sharp, P. and Gefter, M.L. (1980) Proc. Nat. Acad. Sci. U.S.A. 77, 3855–3859.CrossRefGoogle Scholar
  7. 7.
    Weil, P.A., Luse, D.S., Segall, J. and Roeder, R.G. (1979) Cell 18, 469–484.PubMedCrossRefGoogle Scholar
  8. 8.
    Butler, E.T. and Chamberlin, M. (1982) J. Biol. Chem. 257, 5772–5778.Google Scholar
  9. 9.
    Melton, D., Krieg, P., Rebagliati, M., Maniatis, T., Zinn, K. and Green, M. (1984) Nucl. Acids Res. 12, 7035–7056.PubMedCrossRefGoogle Scholar
  10. 10.
    McAllister, W.T., Morris, C., Rosenberg, A. and Studier, F.W. (1981) J. Mol. Biol. 153, 527–544.PubMedCrossRefGoogle Scholar
  11. 11.
    Davanloo, P., Rosenberg, A.B., Dunn, J.J. and Studier, F.W. (1984) Proc. Nat. Acad. Sci. U.S.A. 81, 2035–2039.CrossRefGoogle Scholar
  12. 12.
    Kassavetis, G.A., Butler, E.T., Roulland, D. and Chamberlin, M. (1982) J. Biol. Chem. 257, 5779–5788.PubMedGoogle Scholar
  13. 13.
    Messing, J. and Vieira, J. (1982) Gene 19, 269–276.PubMedCrossRefGoogle Scholar
  14. 14.
    Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  15. 15.
    Messing, J. (1981) in Recombinant DNA (Walton, A.G., ed.) pp. 143–153, Elsevier Press, Amsterdam.Google Scholar
  16. 16.
    Messing, J. (1982) in Genetic Engineering (Setlow, J.K. and Hollaender, A., eds.) Vol 4, pp. 19–35, Plenum Press, New York, NY.Google Scholar
  17. 17.
    Green, M., Maniatis, T. and Melton, D. (1983) Cell 32, 681–694.PubMedCrossRefGoogle Scholar
  18. 18.
    Krainer, A., Maniatis, T., Ruskin, B. and Green, M. (1984) Cell 36, 993–1005.PubMedCrossRefGoogle Scholar
  19. 19.
    Ruskin, B., Krainer, A., Maniatis, T. and Green, M. (1984) Cell 38, 317–331.PubMedCrossRefGoogle Scholar
  20. 20.
    Monroy, G., Spenser, E. and Hurwitz, J. (1978) J. Biol. Chem. 253, 4481–4489.PubMedGoogle Scholar
  21. 21.
    Contreras, R., Cheroutre, H., Degrave, W. and Fiers, W. (1982) Nucl. Acids Res. 10, 6353–6362.PubMedCrossRefGoogle Scholar
  22. 22.
    Church, G. and Gilbert, W. (1984) Proc. Nat. Acad. Sci. U.S.A. 81, 1991–1995.CrossRefGoogle Scholar
  23. 23.
    Angerer, L. and Angerer, R. (1981) Nucl. Acids Res. 9, 2819–2840.PubMedCrossRefGoogle Scholar
  24. 24.
    Cox, K., DeLeon, D., Angerer, L. and Angerer, R. (1984) Dev. Biol. 101, 485–502.PubMedCrossRefGoogle Scholar
  25. 25.
    Jamrich, M., Mahon, K., Gavis, E. and Gall, J. (1984) EMBO J. 3, 1939–1943.PubMedGoogle Scholar
  26. 26.
    Zinn, K., DiMaio, D. and Maniatis, T. (1983) Cell 34, 865–879.PubMedCrossRefGoogle Scholar
  27. 27.
    Favalaro, J., Treisman, R. and Kamen, R. (1980) Methods Enzymol. 65, 718–749.CrossRefGoogle Scholar
  28. 28.
    Goldenberg, C. (1984) Proc. Nat. Acad. Sci. U.S.A. 81, 4707–4711.CrossRefGoogle Scholar
  29. 29.
    Krieg, P. and Melton, D. (1984) Nature 308, 203–206.PubMedCrossRefGoogle Scholar
  30. 30.
    Krieg, P. and Melton, D. (1984) Nucl. Acids Res 12, 7057–7070.PubMedCrossRefGoogle Scholar
  31. 31.
    Young, R. and Davis, R. (1983) Proc. Nat. Acad. Sci. U.S.A. 80, 1194–1198.CrossRefGoogle Scholar
  32. 32.
    Hedrick, S., Cohen, D., Nielsen, E. and Davis, M. (1984) Nature 308, 149–153.PubMedCrossRefGoogle Scholar
  33. 33.
    Sargent, T. and Dawid, I. (1983) Science 222, 135–139.PubMedCrossRefGoogle Scholar
  34. 34.
    Saito, H., Kranz, D., Takagaki, Y., Hayday, A., Eisen, H. and Tonegawa, S. (1984) Nature 309, 757–762.PubMedCrossRefGoogle Scholar
  35. 35.
    Rubenstein, J. and Chappell, T. (1983) J. Cell. Biol. 96, 1464–1469.PubMedCrossRefGoogle Scholar
  36. 36.
    Gurdon, J. and Melton, D. (1981) Ann. Rev. Genet. 15, 189–218.PubMedCrossRefGoogle Scholar
  37. 37.
    Spradling, A. and Rubin, G. (1982) Science 218, 341–347.PubMedCrossRefGoogle Scholar
  38. 38.
    Rubin, G. and Spradling, A. (1982) Science 218, 348–353.PubMedCrossRefGoogle Scholar
  39. 39.
    Diacumakos, E. (1973) Methods Cell Biol. 7, 287–311.PubMedCrossRefGoogle Scholar
  40. 40.
    Stacey, D. and Allfrey, V. (1976) Cell 9, 725–732.PubMedCrossRefGoogle Scholar
  41. 41.
    Graessmann, M. and Graessmann, A. (1976) Proc. Nat. Acad. Sci. U.S.A. 73, 366–370.CrossRefGoogle Scholar
  42. 42.
    Izant, J. and Weintraub, H. (1984) Cell 36, 1007–1015.PubMedCrossRefGoogle Scholar
  43. 43.
    Rubenstein, J., Nicolas, J.F. and Jacob, F. (1984) CR. Hebd. Seances Acad. Sci. Ser. D. Sci. Natur. (Paris) 299, 271–274.Google Scholar
  44. 44.
    Coleman, J., Green, P. and Inouye, M. (1984) Cell 37, 429–436.PubMedCrossRefGoogle Scholar
  45. 45.
    Melton, D. (1984) Proc. Nat. Acad. Sci. U.S.A. (in press).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • P. A. Krieg
    • 1
  • M. R. Rebagliati
    • 1
  • M. R. Green
    • 1
  • D. A. Melton
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyHarvard UniversityCambridgeUSA

Personalised recommendations