Advertisement

Catabolic Plasmids: Their Analysis and Utilization in the Manipulation of Bacterial Metabolic Activities

  • S. Harayama
  • R. H. Don
Part of the Genetic Engineering: Principles and Methods book series (GEPM, volume 7)

Abstract

Most organic compounds synthesized by animal, plant and microbial cells are ultimately subjected to degradation and re-utilization by soil and water microorganisms. Bacteria have been shown to play important and indispensable roles in the recycling of such products and thus in maintaining the ecosystem in balance. During the past few decades, the rapid development of industrial activities has resulted in the introduction of enormous quantities of man-made organics into the biosphere. The majority of these are degraded by microorganisms but some compounds, particularly those that are toxic and/or heavily substituted, accumulate in the environment and may constitute important sources of pollution.

Keywords

Catabolic Pathway Catabolic Enzyme Recalcitrant Compound Hybrid Plasmid Catabolic Plasmid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chakrabarty, A.M. (1972) J. Bacteriol. 112, 815–823.PubMedGoogle Scholar
  2. 2.
    Rheinwald, J.G., Chakrabarty, A.M. and Gunsalus, I.C. (1973) Proc. Nat. Acad. Sci. U.S.A. 70, 885–889.CrossRefGoogle Scholar
  3. 3.
    Neider, M. and Shapiro, J. (1975) J. Bacteriol. 122, 93–98.Google Scholar
  4. 4.
    Dunn, N.W. and Gunsalus, I.C. (1973) J. Bacteriol. 114, 974–979.PubMedGoogle Scholar
  5. 5.
    Wong, C.L. and Dunn, N.W. (1974) Genet. Res. 23, 227–232.PubMedCrossRefGoogle Scholar
  6. 6.
    Thacker, R. and Gunsalus, I.C. (1979) J. Bacteriol. 137, 697–699.PubMedGoogle Scholar
  7. 7.
    Fisher, P.R., Appelton, J. and Pemberton, J.M. (1978) J. Bacteriol. 135, 798–804.PubMedGoogle Scholar
  8. 8.
    Don, R.H. and Pemberton, J.M. (1981) J. Bacteriol. 145, 681–686.PubMedGoogle Scholar
  9. 9.
    Negoro, S., Shinagawa, H., Nakata, A., Kinoshita, S., Hatozaki, T. and Okada, H. (1980) J. Bacteriol. 143, 238–245.PubMedGoogle Scholar
  10. 10.
    Kawasaki, H., Yahara, H. and Tonomura, K. (1981) Agric. Biol. Chem. 45, 1477–1481.CrossRefGoogle Scholar
  11. 11.
    Chatterjee, D.K., Kellog, S.T., Watkins, D.R. and Chakrabarty, A.M. (1981) J. Bacteriol. 146, 639–646.PubMedGoogle Scholar
  12. 12.
    Kamp, P.F. and Chakrabarty, A.M. (1979) in Plasmids of Medical, Environmental and Commercial Importance (Timmis, K.N. and Pühler, A., eds.), pp. 275–285, Elsevier/North Holland Biomedical Press, Amsterdam.Google Scholar
  13. 13.
    Eaton, R.E. and Timmis, K.N. unpublished data.Google Scholar
  14. 14.
    Anson, J.G. and Mackinnon, G. (1984) Appl. Env. Microbiol. 48, 868–869.Google Scholar
  15. 15.
    Chakrabarty, A.M. (1976) Ann. Rev. Genet. 10, 7–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Pemberton, J.M. (1983) Int. Rev. Cytol. 84, 155–182.PubMedCrossRefGoogle Scholar
  17. 17.
    Clarke, P.H. and Ornston, L.N. (1975) in Genetics and Biochemistry of Pseudomonas (Clarke, P.H. and Richmond, M.H., eds.), pp. 191–340, J. Wiley and Sons, London.Google Scholar
  18. 18.
    Holloway, B.W., Krishnapilli, V. and Morgan, A.F. (1979) Microbiol. Rev. 43, 73–102.PubMedGoogle Scholar
  19. 19.
    Dean, H.F. and Morgan, A.F. (1983) J. Bacteriol. 153, 485–497.PubMedGoogle Scholar
  20. 20.
    Kleckner, N., Roth, J. and Botstein, D. (1977) J. Mol. Biol. 116, 125–159.PubMedCrossRefGoogle Scholar
  21. 21.
    Ciampi, M.S., Schmid, M.B. and Roth, J.R. (1982) Proc. Nat. Acad. Sci. U.S.A. 79, 5016–5020.CrossRefGoogle Scholar
  22. 22.
    Boulnois, G.J. (1981) Mol. Gen. Genet. 182, 508–510.PubMedCrossRefGoogle Scholar
  23. 23.
    Lehrbach, P.R. and Timmis, K.N. (1983) Biochem. Soc. Symp. 48, 191–219.PubMedGoogle Scholar
  24. 24.
    Simon, R., Prieffer, U. and Pühler, A. (1983) Biotech. 1, 784–790.CrossRefGoogle Scholar
  25. 25.
    Bagdasarian, M. and Timmis, K.N. (1982) Curr. Top. Microbiol. Immunol. 96, 47–67.PubMedCrossRefGoogle Scholar
  26. 26.
    Bagdasarian, M., Lurz, R., Rückert, B., Franklin, F.C.H., Bagdasarian, M.M., Frey, J. and Timmis, K.N. (1981) Gene 16, 237–247.PubMedCrossRefGoogle Scholar
  27. 27.
    Frey, J., Bagdasarian, M., Feiss, D., Franklin, F.C.H. and Deshusses, J. (1983) Gene 24, 299–308.PubMedCrossRefGoogle Scholar
  28. 28.
    Hohn, B. (1979) Methods Enzymol. 68, 299–309.PubMedCrossRefGoogle Scholar
  29. 29.
    Bagdasarian, M.M., Amman, E., Lurz, R., Rtlckert, B. and Bagdasarian, M. (1983) Gene 26, 273–282.PubMedCrossRefGoogle Scholar
  30. 30.
    Stocker, M.G., Fairweather, N.F. and Spratt, B.G. (1982) Gene 18, 335–341.CrossRefGoogle Scholar
  31. 31.
    Ribbons, D.W. and Eaton, R.W. (1982) in Biodegradation and Detoxification of Environmental Pollutants (Chakrabarty, A.M., ed.) pp. 59–84, CRC Press, Boca Raton, FL.Google Scholar
  32. 32.
    Nakazawa, T. and Yokota, T. (1973) J. Bacteriol. 115, 262–267.PubMedGoogle Scholar
  33. 33.
    Williams, P.A. and Murray, K. (1974) J. Bacteriol. 120, 416–423.PubMedGoogle Scholar
  34. 34.
    Worsey, M.J. and Williams, P.A. (1975) J. Bacteriol. 124, 7–13.PubMedGoogle Scholar
  35. 35.
    Kunz, D.A. and Chapman, P.J. (1981) J. Bacteriol. 146, 179–191.PubMedGoogle Scholar
  36. 36.
    Davey, J.F. and Gibson, D.T. (1974) J. Bacteriol. 119, 923–929.PubMedGoogle Scholar
  37. 37.
    Murray, K., Duggleby, C.J., Sala-Trepat, J.M. and Williams, P.A. (1972) Eur. J. Biochem. 28, 301–310.PubMedCrossRefGoogle Scholar
  38. 38.
    Nakazawa, T., S. Inouye and Nakazawa, A. (1980) J. Bacteriol. 144, 222–231.PubMedGoogle Scholar
  39. 39.
    Inouye, S., Nakazawa, A. and Nakazawa, T. (1981) J. Bacteriol. 145, 1137–1143.PubMedGoogle Scholar
  40. 40.
    Franklin, F.C.H., Bagdasarain, M., Bagdasarian, M.M. and Timmis, K.N. (1981) Proc. Nat. Acad. Sci. U.S.A. 78, 7458–7462.CrossRefGoogle Scholar
  41. 41.
    Harayama, S., Lehrbach, P.R. and Timmis, K.N. (1984) J. Bacteriol. 160, 251–255.PubMedGoogle Scholar
  42. 42.
    Lehrbach, P.R., Zeyer, J., Reineke, W., Knackmuss, H.-J. and Timmis, K.N. (1984) J. Bacteriol. 158, 1025–1032.PubMedGoogle Scholar
  43. 43.
    Dagley, S., Chapman, P.J., Gibson, D.T. and Wood, M.J. (1964) Nature (London) 202, 775–778.CrossRefGoogle Scholar
  44. 44.
    Kojima, Y., Itada, N. and Hayaishi, O. (1961) J. Biol. Chem. 236, 2223–2228.PubMedGoogle Scholar
  45. 45.
    Nosaki, M., Kagamiyama, H. and Hayaishi, O. (1963) Biochem. Z. 338, 582–590.Google Scholar
  46. 46.
    Nakai, C., Hori, K., Kagamiyama, H., Nakazawa, T. and Nozalki, M. (1983) J. Biol. Chem. 258, 2916–2922.PubMedGoogle Scholar
  47. 47.
    Nakai, C., Kagamiyama, H., Nozaki, M., Nakazawa, T., Inouye, S., Ebina, T. and Nakazawa, A. (1983) J. Biol. Chem. 258, 2923–2928.PubMedGoogle Scholar
  48. 48.
    Zukowski, M.M., Gaffney, D.F., Speck, D., Kaufmann, M., Findeli, A., Wisecup, A. and Lecocq, J.-P. (1983) Proc. Nat. Acad. Sci. U.S.A. 80, 1101–1105.CrossRefGoogle Scholar
  49. 49.
    Collinsworth, W.L., Chapman, P.J. and Dagley, S. (1973) J. Bacteriol. 113, 922–931.PubMedGoogle Scholar
  50. 50.
    Inouye, S., Ebina, T., Nakazawa, A. and Nakazawa, T. (1984) Proc. Nat. Acad. Sci. U.S.A. 81, 1688–1691.CrossRefGoogle Scholar
  51. 51.
    Mermod, N., Lehrbach, P.R., Reineke, W. and Timmis, K.N. (1984) EMBO J. 3, 2461–2466.PubMedGoogle Scholar
  52. 52.
    Inouye, S., Nakazawa, A. and Nakazawa, T. (1984) Gene 29, 323–330.PubMedCrossRefGoogle Scholar
  53. 53.
    Worsey, M.J. and Williams, P.A. (1975) J. Bacteriol. 124, 7–13.PubMedGoogle Scholar
  54. 54.
    Worsey, M.J., Franklin, F.C.H. and Williams, P.A. (1978) J. Bacteriol. 134, 757–764.PubMedGoogle Scholar
  55. 55.
    Inouye, S., Nakazawa, A. and Nakazawa, T. (1981) J. Bacteriol. 148, 413–418.PubMedGoogle Scholar
  56. 56.
    Inouye, S., Nakazawa, A. and Nakazawa, T. (1983) J. Bacteriol. 155, 1192–1199.PubMedGoogle Scholar
  57. 57.
    Franklin, F.C.H., Lehrbach, P.R., Lurz, R., Rueckert, B., Bagdasarian, M. and Timmis, K.N. (1983) J. Bacteriol. 154, 676–685.PubMedGoogle Scholar
  58. 58.
    Lehrbach, P.R., McGregor, I., Ward, J.M. and Broda, P. (1983) Plasmid 10, 164–174.PubMedCrossRefGoogle Scholar
  59. 59.
    Yen, K.M. and Gunsalus, I.C. (1982) Proc. Nat. Acad. Sci. U.S.A. 79, 874–878.CrossRefGoogle Scholar
  60. 60.
    Schell, M.A. (1983) J. Bacteriol. 153, 822–829.PubMedGoogle Scholar
  61. 61.
    Don, R.H. and Pemberton, J.M. (1982) J. Bacteriol. 145, 681–686.Google Scholar
  62. 62.
    Don, R.H., Weightman, A.J., Knackmuss, H.-J. and Timmis, K.N. (1985) J. Bacteriol. 161 (in press).Google Scholar
  63. 63.
    Miller, J.H. (1972) Experiments in molecular genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  64. 64.
    Ensley, B.D., Ratzkin, B.J., Osslund, T.D., Simon, M.J., Wackett, L.P. and Gibson, D.T. (1983) Science 222, 167–169.PubMedCrossRefGoogle Scholar
  65. 65.
    Amann, E., Brosius, J. and Ptashne, M. (1983) Gene 25, 167–178.PubMedCrossRefGoogle Scholar
  66. 66.
    Reineke, W. and Knackmuss, H.-J. (1978) Biochim. Biophys. Acta 542, 412–423.PubMedCrossRefGoogle Scholar
  67. 67.
    Reineke, W. and Knackmuss, H.-J. (1978) Biochim. Biophys. Acta 542, 424–429.PubMedCrossRefGoogle Scholar
  68. 68.
    Dorn, E., Hellwig, M., Reineke, W. and Knackmuss, H.-J. (1974) Arch. Microbiol. 99, 61–70.PubMedCrossRefGoogle Scholar
  69. 69.
    Dykhuizen, D.E. and Hartl, D.L. (1983) Microbiol. Rev. 47, 150–168.PubMedGoogle Scholar
  70. 70.
    Haas, D. and Holloway, B.W. (1978) Mol. Gen. Genet. 158, 229–237.PubMedCrossRefGoogle Scholar
  71. 71.
    von Gijsegem, F. and Toussaint, A. (1982) Plasmid 7, 30–44.PubMedCrossRefGoogle Scholar
  72. 72.
    Reineke, W., Jeenes, D.J., Williams, P.A. and Knackmuss, H.-J. (1982) J. Bacteriol. 150, 195–201.PubMedGoogle Scholar
  73. 73.
    Jeenes, D.J., Reineke, W., Knackmuss, H.-J. and Williams, P.A. (1982) J. Bacteriol. 150, 180–187.PubMedGoogle Scholar
  74. 74.
    Nikaido, H. (1979) in Bacterial outer membranes (Inouye, M., ed.), pp. 361–407, J. Wiley and Sons, New York, NY.Google Scholar
  75. 75.
    Ramaley, R.F. (1979) Adv. Appl. Microbiol. 25, 37–55.PubMedCrossRefGoogle Scholar
  76. 76.
    Wagner, W., Vogel, M. and Goebel, W. (1983) J. Bacteriol. 154, 200–210.PubMedGoogle Scholar
  77. 77.
    Lory, S., Tai, P.C. and Davis, B.D. (1983) J. Bacteriol. 156, 695–702.PubMedGoogle Scholar
  78. 78.
    Thayer, J.R. and Wheelis, M.L. (1976) Arch. Microbiol. 110, 37–42.PubMedCrossRefGoogle Scholar
  79. 79.
    Theyer, J.R. and Wheelis, M.L. (1982) J. Gen. Microbiol. 128, 1749–1753.Google Scholar
  80. 80.
    Azzone, G.F., Pietrobon, D. and Zorratti, M. (1984) Curr. Top. Bioenerg. 13, 1–77.Google Scholar
  81. 81.
    Ornston, L.N. (1966) J. Biol. Chem. 241, 3800–3810.PubMedGoogle Scholar
  82. 82.
    Randall, L.L. and Hardy, S.J.S. (1984) Microbiol. Rev. 48, 290–298.PubMedGoogle Scholar
  83. 83.
    Kanner, B.I. and Gutnick, D.L. (1972) J. Bacteriol. 111, 287–289.PubMedGoogle Scholar
  84. 84.
    Gale, E.F., Cundliffe, E., Reynolds, P.E., Richmond, M.H. and Waring, M.J. (1981) The molecular basis of antibiotic action, Wiley Interscience, London.Google Scholar
  85. 85.
    Scott, J.R. (1984) Microbiol. Rev. 48, 1–23.PubMedGoogle Scholar
  86. 86.
    Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982) Molecular cloning. A laboratory manual, pp. 403–433, Cold Spring Harbor laboratory, Cold Spring Harbor, NY.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • S. Harayama
    • 1
  • R. H. Don
    • 1
  1. 1.Department of Medical BiochemistryUniversity of GenevaSwitzerland

Personalised recommendations