Skip to main content

Part of the book series: Basic Life Sciences ((BLSC))

  • 74 Accesses

Abstract

The study of the genetic and molecular events which are involved in tumor development has been stimulated by the observation of discrete genes with oncogenic potential. Such genes have been detected in the genomes of acutely transforming retroviruses which induce tumors in susceptible hosts within a relatively short latent period (reviewed by Cooper, 1982). The mutation or deletion of such genes from the retroviral genome results in their loss of tumorigenicity. In addition, the ability of subgenomic fragments of retroviral DNA to induce the morphological transformation of recipient cells by transfection has provided further evidence for their role in neoplastic diseases (Anderson et al., 1979; Blair et al., 1980; Chang et al., 1980; Copeland et al., 1980; Barbacid, 1981). Sequences homologous to retroviral transforming genes have been detected in normal cellular DNA, suggesting that these sequences were acquired during the evolution of the viruses (Bishop, 1981), The first evidence that cellular DNA from neoplasms could efficiently transform recipient cells was reported by Shih et al. in 19 79 who showed that the high molecular weight DNA of chemically transformed mouse fibroblasts could transform other mouse cells by transfection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, P., Goldfarb, M.P, and Weinberg, R.A., 1979, A defined subgenomic fragment of in vitro synthesized Moloney-sarcoma virus DNA can induce cell transformation upon transfection, Cell, 16:63.

    Article  PubMed  CAS  Google Scholar 

  • Barbacid, M., 1981, Cellular transformation by subgenomic feline sarcoma virus DNA, J. Virol., 37:518

    PubMed  CAS  Google Scholar 

  • Bishop, J.M., 1981, Enemies within: The genesis of retrovirus oncogenes, Cell, 23:5.

    Article  PubMed  CAS  Google Scholar 

  • Blair, D.G., McClements, W.L., Oskarsson, M.K., Fischinger, P.J., and Wande Woude, G.F., 1980, Biological activity of cloned Moloney sarcoma virus DNA: Terminally redundant sequences may enhance transformation efficiency, Proc. Natl. Acad. Sci. USA, 77:3504.

    Article  PubMed  CAS  Google Scholar 

  • Chang, E.H., Maryak, J.M., Wei, C.-M., Shih, T.Y., Shober, R., Cheung, H.L., Ellis, R.W., Hager, G.L., Scolnick, E.M., and Lowy, D.R., 1980, Functional organization of the Harvey murine sarcoma virus genome, J. Virol., 35:76.

    PubMed  CAS  Google Scholar 

  • Cooper, G.M., 1982, Cellular transformiîxg genes, Science, 217:801.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, G.M., and Lane, M.-A., 1984, Cellular transforming genes and oncogenesis, Biochem. Biophys. Acta, in press.

    Google Scholar 

  • Cooper, G.M., and Neiman, P.E., 1980, Transforming genes of neoplasms induced by avian lymphoid leukosis viruses, Nature (London), 287:656.

    Article  CAS  Google Scholar 

  • Cooper, G.M., and Neiman, P.E., 1981, Two distinct candidate transforming genes of lymphoid leukosis virus-induced neoplasms, Nature (London), 292:857.

    Article  CAS  Google Scholar 

  • Copeland, N.G., Zelentz, A.D., and Cooper, G.M., 1980, Transformation by subgenomic fragments of Rous sarcoma virus DNA, Cell, 19:863.

    Article  PubMed  CAS  Google Scholar 

  • Dalla-Favera, R., Gregni, M., Erikson, J., Patterson, D., Gallo, R.C., and Croce, CM., 1982, Human c-myc one gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells, Proc. Natl. Acad. Sci. USA, 79:7824.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, A., Cooper, G.M., Ritz, J., and Lane, M.-A., Identification and molecular cloning of the human Blym transforming gene activated in Burkitt1s lymphomas, Nature (London), 305:112.

    Google Scholar 

  • Diamond, A., Devine, J.M., and Cooper, G.M., 1984, Nucleotide sequence of a human Blym transforming gene activated in a Burkitt’s lymphoma, Science, 225:516.

    Article  PubMed  CAS  Google Scholar 

  • Goubin, G., Goldman, D.S., Luce, J., Neiman, P.E., and Cooper, G.M., 1983, Molecular cloning and nucleotide sequence of a transforming gene detected by transfection of chicken B-cell lymphoma DNA, Nature (London), 302:114.

    Article  CAS  Google Scholar 

  • Haynes, B.F., Hemler, M., Cotner, T., Mann, D.L., Eisenbarth, G.S., Strominger, J., and Fauci, A.S., 1981, Characterization of a monoclonal antibody (5E9) that defines a human cell surface antigen of cell activation, J. Immunol., 127:347.

    PubMed  CAS  Google Scholar 

  • Hayward, W.S., Neel, B.G., and Astrin, S.M., 1981, Activation of a cellular one gene by promoter insertion in ALV-induced lymphoid leukosis, Nature (London), 290:475.

    Article  CAS  Google Scholar 

  • Klein, G., 1981, The role of gene dosage and genetic transpositions in carcinogenesis, Nature (London), 294:313.

    Article  CAS  Google Scholar 

  • Lane, M.-A., Sainten, A., Doherty, K.M., and Cooper, G.M., 1984, Isolation and characterization of a stage-specific transforming gene, Tlym-I, from T-cell lymphomas, Proc. Natl. Acad. Sci. USA, 81:2227.

    Article  PubMed  CAS  Google Scholar 

  • Macgilliray, R.T.A., Mendez, E., and Brew, K., 1977, in: “Proteins of Iron Metabolism,” E.B. Brown, P. Aisen, J. Fielding, and R.R. Crichton, eds., pp. 133–141, Grune and Stratton, New York.

    Google Scholar 

  • Manolov, G., and Manolova, Y.,. 1972, Marker band in one chromosome 14 from Burkitt lymphomas, Nature (London), 237:33.

    Article  CAS  Google Scholar 

  • Marcu, K.B., Harris, L.J., Stanton, L.W., Erikson, J., Watt, R., and Croce, CM., 1983, Transcriptionally active c-myc oncogene is contained within NIARD, a DNA sequence associated with chromosome translocations in B-cell neoplasia, Proc. Natl. Acad. Sci. USA, 80:519.

    Article  PubMed  CAS  Google Scholar 

  • Morton, C.C., Taub, R., Diamond, A., Lane, M.-A., Cooper, G.M., and Leder, P., 1984, Mapping of the human Blym-1 transforming gene activated in Burkitt lymphomas to chromosome 1, Science, 223:173.

    Article  PubMed  CAS  Google Scholar 

  • Neel, B.G., Jhanwar, S.C., Changant, R.S.K., and Hayward, W.S., 1982, Two human c-onc genes are located on the long arm of chromosome 8, Proc. Natl. Acad. Sci. USA, 79:7842.

    Article  PubMed  CAS  Google Scholar 

  • Rowley, J., 1982, Identification of constant chromosome regions involved in human hematologic malignant disease, Science, 216:749.

    Article  PubMed  CAS  Google Scholar 

  • Shih, C., Shilo, B.-Z., Goldbarb, M.P., Dannenberg, A., and Weinberg, R.A., 1979, Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin, Proc. Natl. Acad. Sci. USA, 76:5714.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland, R., Delia, D., Schneider, C., Newman, R., Kemshead, J., and Greaves, M., 1981, Ubiquitous cell-surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin, Proc. Natl. Acad. Sci. USA, 78:4515.

    Article  PubMed  CAS  Google Scholar 

  • Taetle, R., Honeysett, J.M., and Trowbridge, I.S., 1983, Effects of anti-transferrin receptor antibodies on growth of normal and malignant myeloid cells, Int. J. Cancer, 32:343.

    Article  PubMed  CAS  Google Scholar 

  • Taub, R., Kirsch, I., Morton, C., Lenoir, G., Swan, D., Tronick, S., Aaronson, S., and Leder, P., 1982, Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells, Proc. Natl. Acad. Sci. USA, 79:7837.

    Article  PubMed  CAS  Google Scholar 

  • Trowbridge, I.S., and Domingo, D.L., 1981, Effect on growth of human tumor cells of anti-transferrin receptor, monoclonal antibody and toxin antibody conjugates, Nature (London), 294:171.

    Article  CAS  Google Scholar 

  • Trowbridge, I.S., Lesly, J., and Schulte, R., 1982, Murine cell surface transferrin receptor: studies with an anti-receptor monoclonal antibody, J. Cell. Physiol., 112:403.

    Article  PubMed  CAS  Google Scholar 

  • Trowbridge, I.S., and Lopez, F., 1982, Monoclonal antibody to transferrin receptor blocks transferrin binding and inhibits tumor cell growth in vitro, Proc. Natl. Acad. Sci. USA, 79:1175.

    Article  PubMed  CAS  Google Scholar 

  • Trowbridge, I.S., and Omary, M.B., 1981, Human cell surface glycoprotein related to cell proliferation is the receptor for transferrin, Proc. Natl. Acad. Sci. USA, 78:3039.

    Article  PubMed  CAS  Google Scholar 

  • Balmain, A., Ramsden, M., Bowder, G. T., and Smith, J., 1984, Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas, Nature (London), 307:658.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Diamond, A., Devine, J.M., Lane, MA., Cooper, G.M. (1985). The Isolation and Characterization of the Blym-1 Transforming Gene. In: Woodhead, A.D., Shellabarger, C.J., Pond, V., Hollaender, A. (eds) Assessment of Risk from Low-Level Exposure to Radiation and Chemicals. Basic Life Sciences. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4970-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4970-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4972-3

  • Online ISBN: 978-1-4684-4970-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics