Advertisement

The Control of Mutagenesis and Cell Differentiation in Cultured Human and Rodent Cells by Chemicals that Initiate or Promote Tumor Formation

  • E. Huberman
  • C. A. Jones
Part of the Basic Life Sciences book series

Abstract

Clinical observations, retrospective epidemiological surveys, and studies with experimental animals have provided evidence that chemicals in our environment, including some produced as byproducts from our energy generation processes, are responsible for a significant proportion of human cancers (Boyland, 1967; Higginson, 1969; Higginson and Muir, 1979; Maugh, 1979). Furthermore, these studies suggest that certain human cancers result from the interaction of multiple factors in a multistep process (Berenblum, 1969; Van Duuren, 1969; Boutwell, 1974; Diamond et al., 1980b). From an operational point of view, the carcinogenesis process can be divided into three sequential stages: initiation, promotion, and progression. The first two involve the steps that lead to the transformation of a normal into a malignant cell, whereas progression covers processes whereby a transformed cell develops into a malignant tumor.

Keywords

Polycyclic Aromatic Hydrocarbon Chemical Carcinogen Cloning Efficiency Human Promyelocytic Leukemia Cell Hamster Embryo Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, B. N., Durston, W. E., Yamasaki, E., and Lee, F. D., 1973, Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection, Proc. Natl. Acad. Sci. U.S.A., 70:2281.PubMedGoogle Scholar
  2. Aust, A. E., Falahee, K. J., Maher, V. M., and McCormick, J. J., 1980, Human cell-mediated benzo(a)pyrene cytotoxicity and mutagenicity in human diploid fibroblasts, Cancer Res., 40:4070.PubMedGoogle Scholar
  3. Barrett, J. C., Crawford, B. D., Mixter, L. O., Schectman, L. M., Ts’o, P. O. P., and Pollack, R., 1979, Correlation of in vitro growth properties and tumorigenicity of Syrian hamster cell lines, Cancer Res., 39:1504.PubMedGoogle Scholar
  4. Berenblum, I., 1969, A re-evaluation of the concept of cocarcino-genesis, Prog. Exp. Tumor Res., 11:21.PubMedGoogle Scholar
  5. Berwald, Y., and Sachs, L., 1965, In vitro transformation of normal cells to tumor cells by carcinogenic hydrocarbons, J. Natl. Cancer Inst., 35:641.PubMedGoogle Scholar
  6. Bigger, C. A. H., Tomaszewski, J. E., Dipple, A., and Lakes, R.S., 1980, Limitations of metabolic activation systems used with in vitro tests for carcinogenesis, Science, 209:503.PubMedGoogle Scholar
  7. Borek, C., and Sachs, L., 1966, In vitro cell transformation by X-irradiation, Nature (London), 210:276.Google Scholar
  8. Boroujerdi, M., Kung, H., Wilson, A. E. G., and Anderson, M. W., 1981, Metabolism and DNA binding of benzo(a)pyrene in vivo in the rat, Cancer Res., 41:951.PubMedGoogle Scholar
  9. Bouck, N., and DiMayorca, G., 1976, Somatic mutation as the basis for malignant transformation of BKH cells by chemical carcinogens, Nature (London), 264:360.Google Scholar
  10. Boutwell, R. K., 1974, Function and mechanisms of promoters of carcinogenesis, CRC Crit. Rev. Toxicol., 2:419.PubMedGoogle Scholar
  11. Boyland, E., 1967, The correlation of experimental carcinogenesis and cancer in man, Progr. Exp. Tumor Res., 11:222.Google Scholar
  12. Bradley, M. O., Bhuyan, B., Francis, M. C., Langenbach, R., Peterson, A., and Huberman, E., 1981, Mutagenesis by chemical agents in V-79 Chinese hamster cells: A review and analysis of the literature: A report of the Gene-Tox Program, Mutat. Res., 87:81.PubMedGoogle Scholar
  13. Brookes, P., and Lawley, P. D., 1964, Evidence for the binding of polynuclear aromatic hydrocarbons to the nucleic acids of mouse skin: Relation between carcinogenic power of hydrocarbons and their binding to deoxyribonucleic acid, Nature (London), 202:781.Google Scholar
  14. Cabot, M. C., Welsh, C. J., Callaham, M. F., and Huberman, E., 1980, Alterations in lipid metabolism induced by 12–0-tetradecanoylphorbol-13-acetate in differentiating human myeloid leukemia cells, Cancer Res., 40:3674.PubMedGoogle Scholar
  15. Caskey, C. T., and Kruh, G. D., 1979, The HPRT locus, Cell, 16:1.PubMedGoogle Scholar
  16. Cohen, R., Pacifici, M., Rubinstein, N., Beneni, Y., and Holtzer, H., 1977, Effect of a tumor promoter on myogenesis, Nature (London), 266:538.Google Scholar
  17. Colston, K., Colston, M. J., and Feldoman, D., 1981, 1,25-Dihy-droxyvitamin Do and malignant melanoma: the presence of receptors and inhibition of cell growth in culture, Endocrinology, 108:1083.PubMedGoogle Scholar
  18. Colston, K., Hirst, M., and Feldoman, D., 1980, Organ distribution of the cytoplasmic la,25-dihydroxycholecalciferol receptor in various mouse tissues, Endocrinology, 107:1916.PubMedGoogle Scholar
  19. Cooper, R. A., Braunwald, A. D., and Kuo, A. L., 1982, Phorbol ester induction of leukemic cell differentiation is a membrane-mediated process, Proc. Natl. Acad. Sei. U.S.A., 79:2865.Google Scholar
  20. Diamond, L., Kruszewski, F., Aden, D. P., Knowles, B. B., and Baird, W. M., 1980a, Metabolic activation of benzo(a)-pyrene by a human hepatoma cell line, Carcinogenesis, 1:871.PubMedGoogle Scholar
  21. Diamond, L., O’Brien, T. G., and Baird, W. M., 1980b, Tumor promoters and the mechanisms of tumor promotion, Adv. Cancer Res., 32:1.PubMedGoogle Scholar
  22. DiPaolo, J. A., Nelson, R. L., and Donovan, P. J., 1969a, Sarcoma producing cell clones derived from clones transformed in vitro by benzo(a)pyrene, Science, 165:917.PubMedGoogle Scholar
  23. DiPaolo, J. A., Nelson, R. L., and Donovan, P. J., Quantitative studies of in vitro transformation by chemical carcinogens, J. Natl. Cancer Inst., 42:867.Google Scholar
  24. DiPaolo, J. A., Nelson, R. L., and Donovan, P. J., 1971, Morphological, oncogenic, and karyological characteristics of Syrian hamster embryo cells transformed in vitro by carcinogenic polycyclic hydrocarbons, Cancer Res., 31:1118.PubMedGoogle Scholar
  25. Driedger, P. E., and Blumberg, P. M., 1980, Specific binding of phorbol ester tumor promoters, Proc. Natl. Acad. Sci. U.S.A., 77:576.Google Scholar
  26. Dunphy, W. G., Delclos, K.B., and Blumberg, P. M., 1980, Characterization of specific binding of [3H]phorbol-12,13-dibutyrate and [3H]phorbol-12-myristate-13-acetate to mouse brain, Cancer Res., 40:3635.PubMedGoogle Scholar
  27. Eastman, A., Sweetenham, J., and Bresnick, E., 1978, Comparison of in vitro and in vivo binding of polycyclic hydrocarbons to DNA, Chem. Biol. Interact., 23:345.PubMedGoogle Scholar
  28. Fox, C. F., and Das, M., 1979, Internalization and processing of the EFG receptor in the induction of. DNA synthesis in cultured fibroblasts: The endocytic activation hypothesis, J. Supramol. Struct., 10:199.PubMedGoogle Scholar
  29. Frampton, R. J., Suva, I. J., Eisman, J. A., Findlay, D. M., Moore, G. E., Moseley, J. M., and Martin, T. J., 1982, Presence of 1,25-dihydroxyvitamin Do receptors in established human cancer cell lines in culture, Cancer Res., 42:1116.PubMedGoogle Scholar
  30. Fujiki, H., Suganuma, M., Matsukura, N., Sugimura, T., and Takayama, S., 1982, Teleocidin from Streptomyces is a potent promoter of mouse skin carcinogenesis, Carcinogenesis, 3:895.PubMedGoogle Scholar
  31. Gould, M. N., Cathers, L. E., and Moore, C. J., 1982, Human breast cell-mediated mutagenesis of mammalian cells by polycyclic aromatic hydrocarbons, Cancer Res., 42:4619.PubMedGoogle Scholar
  32. Harris, C. C., Hsu, I. C., Stoner, G. D., Trump, B. F., and Selkirk, J. K., 1978, Human pulmonary alveolar macrophages metabolise benzo(a)pyrene to proximate and ultimate mutagens, Nature (London), 272:633.Google Scholar
  33. Haussier, M. R., and McCain, T. A., 1977, Basic and clinical concepts related to vitamin D metabolism and action, N. Engl. J. Med., 297:974.Google Scholar
  34. Heidelberger, C., 1970, Chemical carcinogenesis, Ann. Rev. Biochem., 44:78.Google Scholar
  35. Heidelberger, C., Freeman, A. E., Pienta, R. J., Sivak, A., Bertram, J. S., Casto, B. C., Dunkel, V. C., Francis, M. W., Kakunaga, T., Little, J. B., and Schechtman, L. M., 1983, Cell transformation by chemical agents—a review and analysis of the literature, Mutat. Res., 114:283.PubMedGoogle Scholar
  36. Higginson, J., 1969, Present trends in cancer epidemiology, Proc. Can. Cancer Res. Conf., 8:40.Google Scholar
  37. Higginson, J., and Muir, C. S., 1979, Environmental carcinogenesis; misconceptions and limitations to cancer control, J. Natl. Cancer Inst., 63:1291.PubMedGoogle Scholar
  38. Hoffman, D. R., and Huberman, E., 1982, The control of phospholipid methylation by phorbol diesters in differentiating human myeloid HL-60 leukemia cells, Carcinogenesis, 8:875.Google Scholar
  39. Horowitz, A. D., Greenbaum, E., and Weinstein, I. B., 1981, Identification of receptors for phorbol ester tumor promoters in intact mammalian cells and of an inhibitor of receptor binding in biological fluids, Proc. Natl. Acad. Sci. U.S.A., 78:2315.PubMedGoogle Scholar
  40. Huberman, E., 1978, Mutagenesis and cell transformation of mammalian cells in culture by chemical carcinogens, J. Environ. Pathol. Toxicol., 2:29.PubMedGoogle Scholar
  41. Huberman, E., Braslawsky, G. R., Callaham, M. F., and Fujiki, H., 1982, Induction of differentiation of human promyelocytic leukemia (HL-60 cell) cells by teleocidin and phorbol-12-myristate-13-acetate, Carcinogenesis, 3:111.PubMedGoogle Scholar
  42. Huberman, E., and Callaham, M. F., 1979, Induction of terminal differentiation in human promyelocytic leukemia cells by tumor-promoting agents, Proc. Natl. Acad. Sei. U.S.A., 76:1293.Google Scholar
  43. Huberman, E., Heckman, C., and Langenbach, R., 1979, Stimulation of differentiated functions in human melanoma cells by tumor-promoting agents and dimethylsulfoxide, Cancer Res., 39:2618.PubMedGoogle Scholar
  44. Huberman, E., McKeown, C. K., Jones, C. A., Hoffman, D. R., and Murao, S.-I., 1984, Induction of mutations by chemical agents at the hypoxanthine-guanine phosphorlbosyl transferase locus in human epithelial teratoma cells, Mutat. Res., 130:127.PubMedGoogle Scholar
  45. Huberman, E., and Sachs, L., 1966, Cell susceptibility to transformation and cytotoxicity to the carcinogenic hydrocarbon benzo(a)pyrene, Proc. Natl. Acad. Sci. U.S.A., 56:1123.PubMedGoogle Scholar
  46. Huberman, E., and Sachs, L., 1974, Cell-mediated mutagenesis of mammalian cells with chemical carcinogens, Int. J. Cancer, 13:326.PubMedGoogle Scholar
  47. Huberman, E., and Sachs, L., 1976, Mutability of different genetic loci in mammalian cells by metabolically activated polycyclic hydrocarbons, Proc. Natl. Acad. Sei. U.S.A., 73:88.Google Scholar
  48. Huberman, E., and Sachs, L., 1977, DNA binding and its relationship to carcinogenesis by different polycyclic hydrocarbons, Int. J. Cancer, 19:122.PubMedGoogle Scholar
  49. Huberman, E., Sachs, L., Yang, S. K., and Gelboin, H. V., 1976, Identification of mutagenic metabolites of benzo(a)pyrene in mammalian cells, Proc. Natl. Acad. Sci. U.S.A., 73:607.PubMedGoogle Scholar
  50. Huberman, E., Weeks, C., Herrmann, A., Callaham, M. F., and Slaga, T. J., 1981, Alterations in polyamine levels induced by phorbol diesters and other agents that promote differentiation in human promyelocytic leukemia cells, Proc. Natl, Acad. Sci. U.S.A., 78:1062.Google Scholar
  51. IARC, 1973, International Agency for Research on Cancer Monographs, Evaluation of Carcinogenic Risk of Chemicals to Man, Vol. 3, Lyon, France.Google Scholar
  52. Jones, C. A., and Huberman, E., 1980, A sensitive hepatocyte-mediated assay for the metabolism of nitrosamines to mutagens for mammalian cells, Cancer Res., 40:406.PubMedGoogle Scholar
  53. Jones, C. A., Marlino, P. J., Liinsky, W., and Huberman, E., 1981, The relationship between the carcinogenicity and mutagenicity of nitrosamines in a hepatocyte-mediated mutagenicity assay, Carcinogenesis, 2:1075.PubMedGoogle Scholar
  54. Jones, C. A., Santella, R. M., Huberman, E., Selkirk, J. K., and Grunberger, D., 1983, Cell specific activation of benzo(a)pyrene by fibroblasts and hepatocytes, Carcinogenesis, 4:1351.PubMedGoogle Scholar
  55. Kahl, G. F., Klaus, E., Legraverend, C., Nebert, D. W., and Pelkonen, O., 1979, Formation of benzo(a)pyrene metabolite-nucleoside adducts in isolated perfused rat and mouse liver and in mouse lung slices, Biochem. Pharmacol., 28:1051.PubMedGoogle Scholar
  56. Kasukabe, T., Honma, Y., and Hozumi, M., 1979, Induction of lysosomal enzyme activities with glucocorticoids during differentiation of cultured mouse myeloid leukemia cells, Gann, 70:119.PubMedGoogle Scholar
  57. King, H. W. S., Thompson, M. H., and Brookes, P., 1975, The benzo(a)pyrene deoxyribonucleoside products isolated from DNA after metabolism of benzo(a)pyrene by rat liver microsomes in the presence of DNA, Cancer Res., 34:1263.Google Scholar
  58. Knudsen, A. G., Jr., Hetchcote, H. W., and Brown, B. W., 1975, Mutation and childhood cancer: A probabilistic model for the incidence of retinoblastoma, Proc. Natl. Acad. Sei. U.S.A., 72:166.Google Scholar
  59. Koeffler, H. P., 1981, Human myelogenous leukemia: enhanced clonal proliferation in the presence of phorbol diesters, Blood, 57:256.PubMedGoogle Scholar
  60. Kuroki, T., and Heidelberger, C., 1971, The binding of polycyclic aromatic hydrocarbons to the DNA, RNA and proteins of transformable cells in culture, Cancer Res., 31:2168.PubMedGoogle Scholar
  61. Kuroki, T., Sasaki, K., Chida, K., Abe, E., and Suda, T., 1983, 1,25-Dihydroxyvitamin D3 markedly enhances chemically-induced transformation in BALB 3T3 cells, Gann, 74:611.PubMedGoogle Scholar
  62. Kuroki, T., and Sato, H., 1968, Transformation and neoplastic development in vitro of hamster embryonic cells by 4-nitroquinoline-l-oxide and its derivatives, J. Natl. Cancer Inst., 41:53.PubMedGoogle Scholar
  63. Langenbach, R., Freed, H. J., and Huberman, E., 1978, Liver cell-mediated mutagenesis of mammalian cells by liver carcinogens, Proc. Natl. Acad. Sci. U.S.A., 75:2864.PubMedGoogle Scholar
  64. Langenbach, R., Nesnow, S., Tompa, A., Gingell, R., and Kuszynski, C., 1981, Lung and liver cell-mediated mutagenesis systems: Specificities in the activation of chemical carcinogens, Carcinogenesis, 2:851.PubMedGoogle Scholar
  65. Lewis, J. G., and Swenburg, J. A., 1980, Differential repair of 0-methylguanine in DNA of rat hepatocytes and nonparen-chymal cells, Nature (London), 288:185.Google Scholar
  66. Lijnsky, W., 1983, Species specificity in nitrosamine carcinogenesis, in “Organ and Species Specificity in Chemical Carcinogenesis,” pp. 63–75, R. Langenbach, S. Nesnow, and J. M. Rice, eds., Plenum Press, New York.Google Scholar
  67. Lotem, J., and Sachs, L., 1979. Regulation of normal differentiation in mouse and human myeloid leukemic cells by phorbol esters and the mechanism of tumor promotion, Proc. Natl. Acad. Sci. U.S.A., 76:5158.PubMedGoogle Scholar
  68. MacLeod, M. C., Levin, W., Conney, A. M., Lehr, R. E., Mansfield, B. V., Jerina, D. M., and Selkirk, J. K., 1980, Metabolism of benzo(e)pyrene by rat liver microsomal enzymes, Carcinogenesis, 1:165.PubMedGoogle Scholar
  69. Mager, R., Huberman, E., Yang, S. K., Gelboin, H. V., and Sachs, L., 1977, Transformation of normal hamster cells by benzo(a)pyrene and diol-epoxide, Int. J. Cancer, 19:814.PubMedGoogle Scholar
  70. Major, P. P., Griffin, J. D., Minden, M., and Kufe, D. W., 1981, A blast subclone of the HL-60 human promyeloycytic cell line, Leukemia Res., 5:429.Google Scholar
  71. Manolagas, S. C., and Deftos, L. J., 1980, Studies of the internalization of vitamin D3 metabolites by cultured osteogenic sarcoma cells and their application to a non-chromatographic cytoreceptor assay for 1,25-dihydroxy-vitamin D3, Biochem. Biophys. Res. Commun., 95:596.PubMedGoogle Scholar
  72. Maugh, T. H., 1979, Cancer and environment: Higginson speaks out, Science, 205:1363.Google Scholar
  73. McCarthy, D., SanMiguel, J. F., Freake, H. C., Green, P. M., Zola, H., Catovsky, D., and Goldman, J. M., 1983, 1,25-dihydroxy-vitamin D3 inhibits proliferation of human promyelocytic leukemia (HL60) cells and induces monocyte-macrophage differentiation in HL60 and normal human bone marrow cells, Leukemia Res., 7:51.Google Scholar
  74. Miao, R. M., Friedstell, A. H., and Fodge, D. W., 1978, Opposing effects of tumour promoters on erythroid differentiation, Nature (London), 274:271.Google Scholar
  75. Miller, E. C., Miller, J. A., and Enomoto, M., 1964, The comparative carcinogenicities of 2-acetylaminofluorene and its N-hydroxy metabolite in mice, hamsters and guinea pigs, Cancer Res., 24:2018.PubMedGoogle Scholar
  76. Miyaura, C., Abe, E., Kuribayashi, T., Tanaka, H., Konno, K., Nishii, Y., and Suda, T., 1981, 1,25-dihydroxyvitamin Do induces differentiation of human myeloid leukemia cells, Biochem. Biophys. Res. Commun., 102:937.PubMedGoogle Scholar
  77. Murao, S.-I., Gemmell, M. A., Callaham, M. F., Anderson, N. L., and Huberman, E., 1983, Control of macrophage cell differentiation in human promyelocytic HL-60 leukemia cells by 1,25-dihydroxyvitamin D3 and phorbol-12-myristate-13-acetate, Cancer Res., 43:4989.PubMedGoogle Scholar
  78. Nagasawa, K., and Mak, T. W., 1980, Phorbol esters induce differentiation in human malignant T lymphoblasts, Proc. Natl. Acad. Sci. U.S.A., 77:2964.PubMedGoogle Scholar
  79. Newbold, R. F., Wigley, C. B., Thompson, M. H., and Brookes, P., 1977, Cell-mediated mutagenesis in cultured Chinese hamster cells by carcinogenic hydrocarbons. Nature and extent of the associated hydrocarbon-DNA reaction, Mutat. Res., 43:101.PubMedGoogle Scholar
  80. O’Neill, J. P., Brimmer, P.A., Machanoff, R., Hirsch, G. P., and Hsie, A. W., 1977, A quantitative assay of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase in Chinese hamster ovary cells (CHO/HGPRT system): Development and definition of the system, Mutat. Res., 45:91.PubMedGoogle Scholar
  81. Pahlman, S., Odelstad, I., Larsson, E., Grottle, G., and Nillson, K., 1981, Phenotypic changes of human neuroblastoma cells in culture induced by 12–0-tetradecanoyl-phorbol-13-acetate, Int. J. Cancer, 28:583.PubMedGoogle Scholar
  82. Pienta, R. J., Poiley, J. A., and Lebherz, W. B., 1977, Morphological transformation of early passage golden Syrian hamster embryo cells derived from cryopreserved primary cultures as a reliable in vitro bioassay for identifying diverse carcinogens, Int. J. Cancer, 19:641.Google Scholar
  83. Reinherz, E. L., Kung, P. C., Goldstein, G., Levey, R. H., and Schlossman, S. F., 1980, Discrete stages of human intra-thymic differentiation: Analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage, Proc. Natl. Acad. Sci. U.S.A., 77:1588.PubMedGoogle Scholar
  84. Reinherz, E. L., Kung, P. C., Goldstein, G., and Schlossman, S. F., 1979, Separation of functional subsets of human T cells by a monoclonal antibody, Proc. Natl. Acad. Sci. U.S.A., 76:4061.PubMedGoogle Scholar
  85. Reinherz, E. L., and Schlossman, S. F., 1981, Derivation of human T-cell leukemias, Cancer Res., 41:47 67.Google Scholar
  86. Rice, J. M., and Frith, C. M., 1983, The nature of organ specificity in chemical carcinogenesis, in “Organ and Species Specificity in Chemical Carcinogenesis,” pp. 1–22, R. Langenbach, S. Nesnow, and J. M. Rice, eds., Plenum Press, New York.Google Scholar
  87. Rivedal, E., and Sanner, T., 1982, Promotional effect of different phorbol esters on morphological transformation of hamster embryo cells, Cancer Lett., 17:1.PubMedGoogle Scholar
  88. Rose, N. R., and Friedman, H., 1980, Manual of Clinical Immunology American Society for Microbiology, Washington.Google Scholar
  89. Rovera, G., O’Brien, T. J., and Diamond, L., 1977, Tumor promoters inhibit spontaneous differentiation of friend erythroleukemia cells in culture, Proc. Natl. Acad. Sci. U.S.A., 74:2894.PubMedGoogle Scholar
  90. Rovera, G., Santoli, D., and Damski, C., 1979, Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester, Proc. Natl. Acad. Sci. U.S.A., 76:2779.PubMedGoogle Scholar
  91. Ryffel, B., Henning, C. B., and Huberman, E., 1982, Differentiation of human T lymphoid leukemia cells into cells that have a suppressor phenotype is induced by phorbol-12-myristate-13-acetate, Proc. Natl. Acad. Sci. U.S.A., 79:7336.PubMedGoogle Scholar
  92. Schroff, R. W., Foon, K. A., Billing, R. J., and Fahey, J. L., 1982, Immunologic classification of lymphocytic leukemias based on monoclonal antibody-defined cell surface antigens, Blood, 59:207.PubMedGoogle Scholar
  93. Sebti, S. M., Baird, W. M., Knowles, B. B., and Diamond, L., 1982, Benzo(a)pyrene-DNA adduct formation in target cells in a cell-mediated mutation assay, Carcinogenesis, 3:1317.PubMedGoogle Scholar
  94. Selkirk, J. K., 1977, Benzo(_a)pyrene carcinogenesis: A biochemical selection mechanism, J. Toxicol. Environ. Health, 2:1245.PubMedGoogle Scholar
  95. Slaga, T. J., Bracken, W. M., Valje, A., Levin, W., Yagi, H., Jerina, D. M., and Conney, A. H., 1977, Comparison of the tumor-initiating activities of benzo(a)pyrene arene oxides and diol-epoxides, Cancer Res., 37:4130.PubMedGoogle Scholar
  96. Slaga, T. J., Fischer, S. M., Nelson, K., and Gleason, E. L., 1980, Studies on the mechanism of skin tumor promotion. Evidence for several stages in promotion, Proc. Natl. Acad. Sci. U.S.A., 77:3659.PubMedGoogle Scholar
  97. Slaga, T. J., Sivak, A., and Boutwell, R. K., (eds.), 1978, “Carcinogenesis—a Comprehensive Survey,” Raven Press, New York.Google Scholar
  98. Solanki, V., Slaga, T. J., Callaham, M., and Huberman, E., 1981, The down regulation of specific binding of [20–3[H]phorbol-12,13-dibutyrate and phorbol ester-induced differentiation of human promyelocytic leukemia cells, Proc. Natl, Acad. Sci. U.S.A., 78:1722.Google Scholar
  99. Subak-Sharpe, J. H., Burk, R. R., and Pitts, J. D., 1969, Metabolic cooperation between biochemically marked mammalian cells in tissue culture, J. Cell Sci., 4:353.PubMedGoogle Scholar
  100. Tanaka, H., Abe, E., Miyaura, C., Kuribayashi, T., Konno, K., Nishii, Y., and Suda, T., 1982, lα,25-Dihydroxychole-calclferol and a human myeloid leukaemia cell line (HL-60), Biochem. J., 204:713.PubMedGoogle Scholar
  101. Tanaka, H., Abe, E., Miyaura, C., Shiina, Y., and Suda, T., 1983, 1,25-Dihydroxyvitamin D3 induces differentiation of human prorayelocytic leukemia cells (HL-60) into monocyte-macrophages, but not into granulocytes, Biochem. Biophys. Res. Commun., 117:86.PubMedGoogle Scholar
  102. Trosko, J. E., Chang, C. C., Yotti, L. P., and Chu, E. H. Y., 1977, Effect of phorbol myristate acetate on the recovery of spontaneous and ultraviolet light-induced 6-thioguanine and ouabain-resistant Chinese hamster cells, Cancer Res., 37:188.PubMedGoogle Scholar
  103. Umezawa, K., Weinstein, I. B., Horowitz, A., Fujiki, H., Matsushima, T., and Sugimura, T., 1981, Similarity of teleocidin B and phorbol ester tumour promoters in effects on membrane receptors, Nature (London), 290:411.Google Scholar
  104. Van Duuren, B. L., 1969, Tumor-promoting agents in two stage carcinogenesis, Prog. Exp. Tumor Res., 11:31.PubMedGoogle Scholar
  105. van Zeeland, A. A., and Simons, J. W. I. M., 1976, Linear dose-response relationship after prolonged expression times in V-79 Chinese hamster cells, Mutat. Res., 35:129.PubMedGoogle Scholar
  106. van Zeeland, A. A., van Diggelen, M. C. E., and Simons, J. W. I. M., 1972, The role of metabolic cooperation in selection of hypoxanthine-guanine-phosphoribosyl-transferase (HGPRT)-deficient mutants from diploid mammalian cell strains, Mutat. Res., 14:355.Google Scholar
  107. Wasserman, R. H., Brindak, M. E., Meyer, S. A., and Fullmer, C. S., 1982, Evidence for multiple effects of vitamin Do repletion to 1,25-dihydroxyvitamin Do, Proc. Natl. Acad. Sci. U.S.A., 79:7939.PubMedGoogle Scholar
  108. Weinstein, I. B., Wigler, M., Fisher, P. B., Sisskin, E., and Pietropaolo, C., 1978, Cell culture studies on biological effects of tumor promoters, in: “Mechanisms of Tumor Promotion and Cocarcinogenesis,” pp. 313–333, T. J. Slaga, A. Sivak, and R. K. Boutwell, eds., Raven Press, New York.Google Scholar
  109. Wood, A. W., Chang, R. L., Huang, M.-T., Uskokovic, M., and Conney, A. H., 1983, 1,25-Dihydroxyvitamin D3 inhibits phorbol ester-dependent chemical carcinogenesis in mouse skin, Biochem. Biophys. Res. Commun., 116:605.PubMedGoogle Scholar
  110. Yamasaki, H., Fibach, E., Nudel, U., Weinstein, T. B., Rifkind, R. A., and Marks, P. A., 1977, Tumor promoters inhibit spontaneous and induced differentiation of murine erythroleukemia cells in culture, Proc. Natl. Acad. Sei. U.S.A., 74:3451.Google Scholar
  111. Yotti, L. P., Chang, C. C., and Trosko, J. E., 1979, Elimination of metabolic cooperation in Chinese hamster cells by a tumor promoter, Science, 206:1089.PubMedGoogle Scholar
  112. Zeuthen, J., Norgaard, J. O. R., Avner, P., Fellous, M., Wariovaara, J., Vaheri, A., Rosen, A., and Giovanella, B. C., 1980, Characterization of a human ovarian teratocar-cinoma-derived cell line, Int. J. Cancer, 25:19.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • E. Huberman
    • 1
  • C. A. Jones
    • 1
  1. 1.Division of Biological and Medical ResearchArgonne National LaboratoryArgonneUSA

Personalised recommendations