Skip to main content

Part of the book series: Basic Life Sciences ((BLSC))

  • 71 Accesses

Abstract

This segment of the report of the proceedings of the National Cancer Institute symposium is devoted to the presentations about studies with in vitro cell systems, in vitro-in vivo systems, and whole animals including humans. The NCI symposium was designed to cover many aspects of carcinogenesis so that the similarities and differences of the manner in which ionizing radiation and chemical carcinogens initiate cancer and complete its expression could be examined. The hope was that the identification of both the common and the clearly distinct features would help elucidate mechanisms and indicate areas for new research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Given by Speakers

Comparative Mechanism of Carcinogenesis fry Radiation and Chemcals: Implications of the Human Experience — A. C. Upton

  • International Agency for Research on Cancer: Evaluation of the Carcinogenic Risk of Chemicals to Humans, 1982, IARC Monographs Supplement 4, IARC, Lyon.

    Google Scholar 

  • National Research Council, Committee on the Biological Effects of Ionizing Radiations, 1980, “The Effects on populations of Exposure to Low Levels of Ionizing Radiation,” National Academy of Sciences, Washington, DC.

    Google Scholar 

  • United Nations Scientific Committee on the Effects of Atomic Radiation: Sources and Effects of Ionizing Radiation, 1977. Report to the General Assembly, with Annexes, 32 Session, Suppl. 40 (A/32/40), united Nations, New York.

    Google Scholar 

  • Upton, A. C., 1981, Principles of Cancer Biology: Etiology and Prevention, in: “Principles and Practices of Oncology,” pp. 33–58, V. T. DeVita, S. Hellman, and S. A. Rosenberg, eds., J. B. Lippincott Company, Philadelphia.

    Google Scholar 

  • Weinstein, I. B., 1980, Molecular and cellular mechanisms of chemical carcinogenesis, in: “Cancer and Chemotherapy,” Vol. I, pp. 169–196, S. T. Crooke, and A. W. Prestako, eds., Academic Press, New York.

    Google Scholar 

Chemicals vs. Ionizing Radiation in Carcinogenesis: Human Experience — R. W. Miller

  • Miller, R. W., 1978, Environmental causes of cancer in childhood, Ady. Pedjatr., 25:97.

    CAS  Google Scholar 

  • Miller, R. W., 1979. Transplacental chemical carcinogenesis in man, Natl. Cancer Inst. Monogr., 52:13.

    Google Scholar 

  • Miller, R. W., 1982, Radiation effects: Highlights of a meeting, J. Pediatr., 101:887.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R. W., and Beebe, G. W., Radiation leukemia and lymphoma in man, in: “Radiation Carcinogenesis,” A. C. Upton, ed., Elsevier North-Holland, New York, in press.

    Google Scholar 

  • Miller, R. W., and Boice, J. D., Jr., Radiogenic cancer after prenatal or childhood exposure, in: “Radiation Carcinogenesis,” A. C. Upton, ed., Elsevier North-Holland, New York, in press.

    Google Scholar 

  • Tomatis, L., Agthe, C., Bartsch, H., Huff, J., Montesano, R., Saracci, R., Walker, E., and Wilbourn, J., 1978, Evaluation of the carcinogenicity of chemicals, Cancer Res.. 38:877.

    PubMed  CAS  Google Scholar 

Mechanisms of Carcinogenesis in vivo — F. J. Burns

  • Burns, F. J., Albert, R. E., Altshuler, B., and Morris, E., 1983, Approach to risk assessment for genotoxic carcinogens based on data from the mouse skin initiation-promotion model, Environ. Health Perspect., 500:309.

    Article  Google Scholar 

  • Burns, F. J., Strickland, P., Vanderlaan, M., and Albert, R. E., 1978, Rat skin tumors following single and fractionated exposures to proton radiation, Radiat. Res., 74:152.

    Article  PubMed  CAS  Google Scholar 

  • Burns, F. J., and Vanderlaan, M., 1975, Split-dose recovery for radiation-induced tumors in rat skin, Int. J. Radiat. Biol., 32:135.

    Google Scholar 

  • Druckery, H., 1967, Quantitative aspects of chemical carcinogenesis, in: “Potential Carcinogenic Hazards from Drugs Evaluation of Risks,” VICC Monograph Series, Vol. 7, pp. 60–78, R. Truhart, ed., Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Whittemore, A. S., 1978, Quantitative theories of oncogenesis, in.: “Advances in Cancer Research,” Vol. 27, pp. 55–88, G. Klein and S. Weinhouse, eds., Academic Press, New York.

    Google Scholar 

In Vitro Studies with Radiation and Chemicals — M. M. Elkind

  • Gray, L. H., 1965, Radiation biology and cancer, in: “Cellular Radiation Biology,” pp. 7–25, The Williams & Wilkins Company, Baltimore.

    Google Scholar 

  • Han, A., and Elkind, M. M., 1982, Enhanced transformation of mouse 10T1/2 cells by 12–0-tetradecanoylphorbol-13-acetate following exposure to X-rays or to fission spectrum neutrons, Cancer Res., 42:477.

    PubMed  CAS  Google Scholar 

  • Han, A., Hill, C. K., and Elkind, M. M., 1980, Repair of cell killing and neoplastic transformation at reduced dose rates of Co gamma-rays, Cancer Res.. 40:3328.

    PubMed  CAS  Google Scholar 

  • Maher, V. M., and McCormick, J. J., 1976, Effect of DNA repair on the cytotoxicity and mutagenicity of UV irradiation and chemical carcinogens in normal and xeroderma pigmentosum cells, in: “Biology of Radiation Carcinogenesis,” pp. 129–145, J. M. Yuhas, R. W. Tennant, J. D. Regan, eds., Raven Press, New York.

    Google Scholar 

  • Susuki, F., Han, A., Lankas, G. R., Utsumi, H., and Elkind, M. M., 1981, Spectral dependencies of killing, mutation, and transformation in mammalian cells and their relevance to hazards caused by solar ultraviolet radiation, Cancer Res., 41:4916.

    Google Scholar 

Stages in Radiation and Chemical Carcinogenesis — H. C. Pitot

  • Bohrman, J. S., 1983, Identification and assessment of tumor-promoting and cocarcinogenic agents: State-of-the-art in Vitro methods, CRC Critt Rey. Toxicol., 11:121.

    Article  CAS  Google Scholar 

  • Boutwell, R. K., 1974, Function and mechanism of promoters of carcinogensis, CRC Crit. Rev. Toxicol., 2:419.

    Article  PubMed  CAS  Google Scholar 

  • Emerst, I., and Cerutti, P. A., 1982, Tumor promoter phorbol 12-myristate 13-acetate induces a clastogenic factor in human lymphocytes, Proc. Natl. Acad. Sci. USA. 79:7509.

    Article  Google Scholar 

  • Pitot, H. C., 1984, Neoplastic development and human cancer, Cancer Surveys. 2(4): 519.

    Google Scholar 

Experimental Lung Cancer Induced in Hamsters bv Ionizing Radiation and Chemical Carcinogens — J. B. Little

  • Kennedy, A. R., and Little, J. B., 1974.Transport and localization of benzo(a.)pyrene-hematite and 210Po-hematite in the hamster lung following intratracheal instillation, Cancer Res.. 34:1344.

    PubMed  CAS  Google Scholar 

  • Kennedy, A. R., and Little, J. B., 1975, Localization of polycyclic hydrocarbon carcinogens in the lung following intratracheal instillation in gelatin solution, Cancer Res.. 35:1563.

    PubMed  CAS  Google Scholar 

  • Kennedy, A. R., Worcester, J., and Little, J. B., 1977- Deposition and localization of polonium-210 intratrachealy instilled in the hamster lung as determined by autoradiography of freeze-dried sections, Radiat. Res., 69:553.

    Article  PubMed  CAS  Google Scholar 

  • Little, J. B., and Kennedy, A. R., 1979, Evaluation of alpha radiation-induced respiratory carcinogenesis in Syrian hamsters: total dose and dose rate, Prog. Exp. Tumor Res., 24:356.

    PubMed  CAS  Google Scholar 

  • Little, J. B., Kennedy, A. R., and McGandy, R. B., 1975, Lung cancer induced in hamsters by low doses of alpha radiation from polonium-210, Science, 188:737.

    Article  PubMed  CAS  Google Scholar 

  • Little, J. B., Kennedy, A. R., and McGandy, R. B., 1978, Effect of dose distribution on the induction of experimental lung cancer by alpha radiation, Health Phvs., 35:595.

    Article  CAS  Google Scholar 

  • Little, J. B., McGandy, R. B., and Kennedy, A. R., 1978, Interactions between polonium-210 alpha radiation, benzo(a)pyrene and 0.9% NaCl solution instillations in the induction of experimental lung cancer, Cancer Res. 38:1929.

    PubMed  CAS  Google Scholar 

  • Little, J. B., and O’Toole, W. F., 1974, Respiratory tract tumors in hamsters induced by benzo(a)pyrene and polonium-210 alpha radiation, Cancer Res., 34:3026.

    PubMed  CAS  Google Scholar 

  • Shami, S. G., Thibideau, L. A., Kennedy, A. R., and Little, J. B., 1982, Proliferative and morphological changes in the pulmonary epithelium of the Syrian golden hamster during carcinogenesis initiated by Po alpha-radiation, Cancer Res., 42:1405.

    PubMed  CAS  Google Scholar 

Induction of In Vitro Transformation by Chemical and Radiation — A. R. Kennedy

  • Barrett, J. C., Hesterberg, T. W., and Thomassen, D., Use of cell transformation systems for carcinogenicity testing and mechanistic studies of carcinogenesis, Pharmacol. Rev., in press.

    Google Scholar 

  • Bertram, J. S., Mordan, L. J., Domanska-Janik, K., and Bernacki, R. J., 1982, Inhibition of in vitro neoplastic transformation by retinoids, in: “Molecular Interrelationships of Nutrition and Cancer,” pp. 315–335, M. S. Arnott, J. Van Eys, and Y.-M. Wang, eds., Raven Press, New York.

    Google Scholar 

  • Borek, C., 1982, Radiation oncogenesis in cell culture, Adv. Cancer Res., 37:159.

    Article  PubMed  CAS  Google Scholar 

  • DiPaolo, J. A., 1983, Relative difficulties in transforming human and animal cells in vitro, J. Natl. Cancer Inst., 70:3.

    PubMed  CAS  Google Scholar 

  • Elkind, M. M., Han, A., Hill, C. K., and Buonaguro, F., 1983, Repair mechanisms in radiation-induced cell transformation, in: “Proceedings of 7th International Congress of Radiation Research,” pp. 33–42, J. J. Broerse, G. W. Barendson, H. B. Kal, A. J. Van der Kogel, eds., Martinus Nijhoff Publishers, Amsterdam.

    Google Scholar 

  • Hall, E. J., and Miller, R. C., 1981, The how and why of in vitro oncogenic transformation, Radiat. Res., 87:208.

    Article  PubMed  CAS  Google Scholar 

  • Heidelberg, C., 1980, Mammalian cell transformation and mammalian cell mutagenesis in vitro, J. Exp. Pathol. Toxicol., 3:69.

    Google Scholar 

  • Huberman, E., 1978, Mutagenesis and cell transformation of mammalian cells in culture by chemical carcinogens, J. Environ. Pathol. Toxicol., 2(1):29.

    PubMed  CAS  Google Scholar 

  • Kakunaga, T., 1981, Cell transformation as a system for studying mechanisms of carcinogenesis, in: “Gann Monograph on Cancer Research,” Vol. 27, pp. 231–242, “Mutation, Promotion and Transformation In Vitro,” Japan Scientific Society, Tokyo.

    Google Scholar 

  • Kennedy, A. R., 1982, Antipain, but not cycloheximide, suppresses radiation transformation when present for only one day at five days postirradiation, Carcinogenesis, 3:1093.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, A. R., 1984, Promotion and other interactions between agents in the induction of transformation in vitro in fibroblast, in: “Mechanisms of Tumor Promotion,” Vol. III, “Tumor Promotion and Cocarcinogenesis In Vitro,” pp. 13–55, T. J. Slaga, ed., CRC Press, Boca Raton.

    Google Scholar 

  • Kennedy, A. R., Prevention of radiation-induced transformation in vitro, in: “Vitamins, Nutrition and Cancer,” K. N. Prasad, and J. V. Sutherland, eds., S. Karger AG, Basel, in press.

    Google Scholar 

  • Kennedy, A. R., Cairns, J., and Little, J. B., 1984, The timing of the steps in transformation of C3H/10T1/2 cells by X-irradiation, Nature(London), 307:85.

    Article  CAS  Google Scholar 

  • Kennedy, A. R., Fox, M., Murphy, G., and Little, J. B., 1980, Relationship between X-ray exposure and malignant transformation in C3H 10T1/2 cells, Proc. Natl. Acad. Sci. USA. 77:7262.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, A. R., and Little, J. B., 1980, An investigation of the mechanism for the enhancement of radiation transformation in vitro by TPA, Carcinogenesis. 1:1039.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, A. R., Murphy, G., and Little, J. B., 1980, The effect of time and duration of exposure to 12–0-tetradecanoyl-phorbol-13-acetate (TPA) on X-ray transformation of C3H/10T1/2 cells, Cancer Res., 40:1915.

    PubMed  CAS  Google Scholar 

  • Little, J. B., 1981, Radiation transformation in Vitro: Implications for mechanisms of carcinogenesis, in: “Advances in Modern Environmental Toxicology,” Vol. I, “Mammalian Cell Transformation by Chemical Carcinogens,” pp. 383–426, N. Mishra, V. Dunkel, and M. Mehlman, eds., Senate Press, Inc., New Jersey.

    Google Scholar 

  • Sivak, A., Charest, M. C., Rudenko, L., Silveira, D. M., Simons, I., and Wood, A. M., 1981, BALB/c-3T3 cells as target cells for chemically induced neoplastic transformation, in: “Advances in Modern Environmental Toxicology,” Vol. I, “Mammalian Cell Transformation by Chemical Carcinogens,” pp. 133–180, N. Mishra, V. Dunkel, and M. Mehlman, eds., Senate Press, Inc., New Jersey.

    Google Scholar 

  • Ts’o, P. O. P., 1980, Neoplastic transformation, somatic mutation and differentiation, in: “Carcinogenesis: Fundamental Mechanisms and Environmental Effects,” pp. 297–310, B. Pullman, P. O. P. Ts’o, and H. Gelboin, eds., D. Reidel Publishing Co., Hingham, MA.

    Chapter  Google Scholar 

  • Yang, T. C. H., and Tobias, C. A., 1982, Radiation and cell transformation in vitro, Adv. Biol. Med. Phvs., 17:417.

    Google Scholar 

  • Yavelow, J., Finlay, T. H., Kennedy, A. R., and Troll, W., 1983. Bowman-Birk soybean protease inhibitor as an anticarcinogen, Cancer Res., 43:2454.

    CAS  Google Scholar 

Neoplastic Development After Exposure to Radiation and Chemical Carcinogens — R. L. Ullrich

  • Ethier, S. P., and Ullrich, R. L., 1981, Detection of ductal dysplasia in mammary outgrowths derived from carcinogen-treated virgin female BALB/c mice, Cancer Res., 41:1808.

    Google Scholar 

  • Terzaghi, M., and Nettesheim, P., 1979, Dynamics of neoplastic development in carcinogen-exposed tracheal mucosa, Cancer Res., 39:4003.

    PubMed  CAS  Google Scholar 

  • Terzaghi, M., Klein-Szanto, A., and Nettesheim, P., 1983, Effect of the promoter TPA on the evolution of carcinogen-altered cell populations in tracheas initiated with DMBA, Cancer Res,, 43:1461.

    PubMed  CAS  Google Scholar 

  • Ullrich, R. L., 1980, Interaction of radiation and chemical carcinogens, in: “Carcinogenesis — A Comprehensive Survey,” Vol. 5, “Modifiers of Chemical Carcinogenesis: An Approach to the Biochemical Mechanisms and Prevention,” pp. 169–184, T. J. Slaga, ed., Raven Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Fry, R.J.M. (1985). Cellular and Animal Models. In: Woodhead, A.D., Shellabarger, C.J., Pond, V., Hollaender, A. (eds) Assessment of Risk from Low-Level Exposure to Radiation and Chemicals. Basic Life Sciences. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4970-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4970-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4972-3

  • Online ISBN: 978-1-4684-4970-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics