Advertisement

Induction and Manifestation of Hereditary Cataracts

  • Udo H. Ehling
Part of the Basic Life Sciences book series

Abstract

The lens is a transparent, highly refractive structure located between the pupillary portion of the iris and the vitreous. A cataract is an opacity of the lens causing a reduction of visual function. Ehling (1963) pointed out that morphologically comparable cataracts in mammalian species have very often the same mode of inheritance.

Keywords

Dominant Mutation Lens Opacity Chemical Mutagen United Nations Scientific Committee Recessive Locus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carper, D., Shinohara, T., Piatigorsky, J., and Kinoshita, J.H., 1982, Deficiency of functional messenger RNA for a develop-mentally regulated γ-crystallin polypeptide in a hereditary cataract, Science, 217:463.PubMedCrossRefGoogle Scholar
  2. Ehling, U.H., 1957, Untersuchungen zur kausalen Genese erblicher Katarakte beim Kaninchen, Z. menschl. Vererb.-Konstitutionsl., 34:77.PubMedGoogle Scholar
  3. Ehling, U.H., 1963, Vererbung von Augenleiden im Tierreich, in: “Bericht über die 65. Zusammenkunft der Deutschen Ophthalmologischen Gesellschaft in Heidelberg,” pp. 228–238, Bergmann-Verlag, München.Google Scholar
  4. Ehling, U.H., 1966, Dominant mutations affecting the skeleton in offspring of X-irradiated male mice, Genetics, 54:1381.PubMedGoogle Scholar
  5. Ehling, U.H., 1976, Die Gefährdung der menschlichen Erbanlagen im technischen Zeitalter, Fortschr. Geb. Rontgenstr., 124:166.CrossRefGoogle Scholar
  6. Ehling, U.H., 1978, Specific locus mutations in mice, in: “Chemical Mutagens,” Vol. 5, pp. 233–256, A. Hollaender and F.J. de Serres, eds., Plenum Publishing Corporation, New York-London.Google Scholar
  7. Ehling, U.H., 1981, Mutagenicity of selected chemicals in induction of specific locus mutations in mice, in: “Comparative Chemical Mutagenesis,” pp. 729–742, F.J. de Serres and M.D. Shelby, eds., Plenum Publishing Corporation, New York-London.CrossRefGoogle Scholar
  8. Ehling, U.H., 1983, Cataracts — Indicators for dominant mutations in mice and man, in: “Utilization of Mammalian Specific Locus Studies in Hazard Evaluation and Estimation of Genetic Risk,” pp. 169–190, F.J. de Serres and W. Sheridan, eds., Plenum Publishing Corporation, New York-London.CrossRefGoogle Scholar
  9. Ehling, U.H., 1984a, Methods to estimate the genetic risk, in: “Mutations in Man,” pp. 292–318, G. Obe, ed., Springer-Verlag, Berlin-Heidelberg.Google Scholar
  10. Ehling, U.H., 1984b, Variants and mutants, Mutat. Res., (in press).Google Scholar
  11. Ehling, U.H., Favor, J., Kratochvilova, J., and Neuhauser-Klaus, A,, 1982, Dominant cataract mutations and specific locus mutations in mice induced by radiation or ethylnitrosourea, Mutat. Res., 92:181.PubMedCrossRefGoogle Scholar
  12. Favor, J., 1982, The penetrance value tested of a presumed dominant mutation heterozygote in a genetic confirmation test for a given number of offspring observed, Mutat. Res., 92:192.Google Scholar
  13. Favor, J., 1983a, A comparison of the dominant cataract and recessive specific locus mutation rates induced by treatment of male mice with ethylnitrosourea, Mutat. Res., 110:367.PubMedCrossRefGoogle Scholar
  14. Favor, J., 1983b, Studies on ethylnitrosourea-induced dominant cataract mutations in mice, in : “Symposium on Mutagenesis: Basic and Applied,” pp. 11–12, L.N. Mithila University Press, Kameshwaranagar, Darbhanga, India, December 22–23, 1983.Google Scholar
  15. Kratochvilova, J., 1981, Dominant cataract mutations detected in offspring of gamma-irradiated male mice, J. Hered., 72:302.PubMedGoogle Scholar
  16. Kratochvilova, J., and Ehling, U.H., 1979, Dominant cataract mutations induced by γ-irration of male mice, Mutat. Res., 63:221.PubMedCrossRefGoogle Scholar
  17. Maisel, H., Harding, C.V., Alcala, J.R., Kuszak, J., and Bradley, R., 1981, The morphology of the lens, in: “Molecular and Cellular Biology of the Eye Lens,” pp. 49–84, H. Bloemendal, ed., John Wiley & Sons, New York.Google Scholar
  18. McKusick, V.A., 1983, “Mendelian Inheritance in Man,” The Johns Hopkins University Press, Sixth Edition, Baltimore-London.Google Scholar
  19. National Research Council, Committee on the Biological Effects of Ionizing Radiations, 1980, “The Effects on Populations of Exposure to Low Levels of Ionizing Radiation,” National Academy of Sciences, Washington, D.C.Google Scholar
  20. Oftedal, P., 1984, Genetic damage following the nuclear war, in: “Effects of Nuclear War on Health and Health Services,” pp. 163–174, World Health Organization, Geneva, Switzerland.Google Scholar
  21. Russell, L.B., and Matter, B.E., 1980, Whole-mammal mutagenicity tests: Evaluation of five methods, Mutat. Res., 75:279.PubMedGoogle Scholar
  22. Russell, L.B., Selby, P.B., Halle, E.v., Sheridan, W., and Valcovic, L., 1981, The mouse specific locus test with agents other than radiations. Interpretation of data and recommendations for future work, Mutat. Res., 86:329.PubMedGoogle Scholar
  23. Russell, W.L., 1972, The genetic effects of radiation, in: “Peaceful Uses of the Atomic Energy,” Vol. 13, pp. 487–500, United Nations, New York, International Atomic Energy Agency, Vienna.Google Scholar
  24. Sankaranarayanan, K., 1982, “Genetic Effects of Ionizing Radiation in Multicellular Eukaryotes and the Assessment of Genetic Radiation Hazards in Man,” Elsevier Biomedical Press, Amsterdam.Google Scholar
  25. Schull, W.J., Otake, M., and Neel, J.V., 1981, Genetic effects of the atomic bombs: a reappraisal, Science, 213:1220 (Quotation p. 1220).PubMedCrossRefGoogle Scholar
  26. Searle, A.G., 1974, Mutation induction in mice, in : “Advances in Radiation Biology,” Vol. 4, pp. 131–207, J.T. Lett, H. Adler, and M. Zelle, eds., Academic Press, New York-London.Google Scholar
  27. Searle, A.G., 1975, The specific locus test in the mouse, Mutat. Res., 31:277.Google Scholar
  28. Selby, P.B., 1982, Induced mutations in mice and genetic risk assessment in humans, in: “Progress in Mutation Research,” Vol. 3, pp. 275–288, K.C. Bora et al., eds., Elsevier Biomedical Press, Amsterdam.Google Scholar
  29. Shinohara, T., and Piatigorsky, J., 1980, Persistence of crystallin messenger RNA’s with reduced translation in hereditary cataracts in mice, Science, 210:914.PubMedCrossRefGoogle Scholar
  30. United Nations Scientific Committee on the Effects of Atomic Radiation, 1977, “Ionizing Radiation: Sources and Biological Effects,” United Nations Publication A/32/40, United Nations, New York.Google Scholar
  31. United Nations Scientific Committee on the Effects of Atomic Radiation, 1982, “Ionizing Radiation: Sources and Biological Effects,” United Nations Publication A/36/49, United Nations, New York.Google Scholar
  32. World Health Organization, 1984, “Effect of Nuclear War on Health and Health Services,” Report of the International Committee of Experts in Medical Sciences and Public Health to Implement Resolution WHA 34.38, World Health Organization, Geneva, Switzerland.Google Scholar
  33. Ehling, U.H., 1976, Die Gefahrdurg der menschlichen Erbanlagen in technischen Zeitalter, Fortschr. Rontgenstr., 124:166.CrossRefGoogle Scholar
  34. Ehling, U.H., and Neuhauser-Klaus, A., 1972, Procarbazine-induced specific locus mutations in male mice, Mut. Res., 15:185.CrossRefGoogle Scholar
  35. Ehling, U.H., Favor, J., Kratochvilova, J., and Neuhauser-Klaus, A., 1982, Dominant cataract mutations and specific-locus mutations in mice induced by radiation or ethylnitrosourea, Mut. Res., 92:181.CrossRefGoogle Scholar
  36. Genetics Conference, 1947, Genetic effects of the atomic bombs in Hiroshima and Nagasaki, Science, 106:331.CrossRefGoogle Scholar
  37. Kratochvilova, J., 1981, Dominant cataract mutations detected in offspring of gamma-irradiated male mice, Journ. Hered., 72:302.Google Scholar
  38. Lyon, M.F., 1974, Mutation induction in mice, in Advances in Radiation Biology, 4:pp 131–207, Lett, G.T., Adler, H.I., and Zelle, M., eds., Academic Press, New York and London.Google Scholar
  39. Lyon, M.F., Phillips, J.S., and Bailey, H.J., 1972, Mutagenic effects of repeated small radiation doses to mouse spermatogonia. 1. Specific-locus mutation rates, Mut. Res., 15:185.CrossRefGoogle Scholar
  40. McKusick, V.A., 1983, “Mendelian Inheritance in Man”, The Johns Hopkins University Press, Sixth Edition, Baltimore-London.Google Scholar
  41. Neel, J.V., and Schull, W.J., 1958, Human Heredity, The University of Chicago Press.Google Scholar
  42. Russell, W.L., 1965, Studies in mammalian radiation genetics, Nucleonics, 23:53.Google Scholar
  43. Sobel, F.H., 1984, Problems and perspectives in genetic toxicology, pp 1–19, in Mutations in Man, ed. G. Obe, Springer-Verlag, Berlin-Heidelberg.CrossRefGoogle Scholar
  44. Stevenson, A.C., 1959, The load of hereditary defects in human populations, Radiat. Res., Suppl. 1:306.Google Scholar
  45. Vogt, R., Wagner, H., and Schlapfer, H., 1940, Erbbiologie und Erb-pathologie des Auges, Handbuch der Erbbiologie des Menschen Bd 3, Hrsg. G. Just, Berlin.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Udo H. Ehling
    • 1
  1. 1.Institut für GenetikGesellschaft für Strahlen- und UmweltforschungNeuherbergFederal Republic of Germany

Personalised recommendations