Radiogenic Neoplasia in The Thyroid and Mammary Clonogens: Progress, Problems and Possibilities

  • Kelly H. Clifton
  • Ken Kamiya
  • R. Timothy Mulcahy
  • Michael N. Gould
Part of the Basic Life Sciences book series


It appears unlikely that the human epidemiological data available, or apt to become available, will allow distinction among the various mathematical models of radiation dose-neoplasia risk. Hence, risk estimates in the critical low dose and low dose-rate regions based on the human experience alone remain open to question.


Mammary Gland Iodine Deficiency Thyroid Cell Clonogenic Cell Leydig Cell Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beierwaltes, W.H., and Al Saadi, A.A., 1968, Sequential cytogenetic changes in development of metastatic thyroid carcinoma, in; “Thyroid Neoplasia,” S. Young and D.R. Inman, eds., Academic Press, New York.Google Scholar
  2. Clifton, K.H., 1959, Problems in experimental turnorigenesis of the pituitary gland, gonads, adrenal cortices and mammary glands: A review, Cancer Res., 19: 2.PubMedGoogle Scholar
  3. Clifton, K.H., and Crowley, J.J., 1978, Effects of radiation type and role of glucocorticoids, gonadectomy and thyroidectomy in mammary tumor induction in MtT-grafted rats, Cancer Res., 38:1507.PubMedGoogle Scholar
  4. Clifton, K.H., and Furth, J., 1960, Ducto-alveolar growth in mammary glands of adreno-gonadectomized male rats bearing mammotropic pituitary tumors, Endocrinology, 66:893.PubMedCrossRefGoogle Scholar
  5. Clifton, K.H., and Gould, M.N., 1984, Clonogen transplantation assay of mammary and thyroid epithelial cells, in: “Clonal Regeneration Techniques,” C.S. Potten, and J.H. Henry, eds., Edinburgh, Churchill Livingstone, in press.Google Scholar
  6. Clifton, K.H., and Sridharan, B.N., 1975, Endocrine factors and tumor growth, in: “Cancer, a Comprehensive Treatise,” p. 249, vol. 3, F.F. Becker, ed., Plenum Press, New York.Google Scholar
  7. DeOme, K.B., Miyamoto, M.J., Osborn, R.C., Guzman, R.C., and Lum, K., 1978, Detection of inapparent nodule-transformed cells in the mammary gland tissues of virgin BALB/cfC3H mice, Cancer Res., 38:2103.PubMedGoogle Scholar
  8. Durand, R., and Sutherland, R., 1972, Effects of intercellular contact on repair of radiation damage, Exp. Cell Res., 71:75.PubMedCrossRefGoogle Scholar
  9. Gould, M.N., 1984, Radiation initiation of carcinogenesis in vivo: A rare or common cellular event, in: “Radiation Carcinogenesis: Epidemiology and Biological Significance,” p. 347, J.D. Boice and J.F. Fraumeni, eds., Raven Press, New York.Google Scholar
  10. Hellstrom, K.E., 1961, Chromosomal studies on diethylstilbestrol-induced testicular tumors in mice, J. Natl. Cancer Inst., 26:707.PubMedGoogle Scholar
  11. Jirtle, R.L., Michelopoulos, G., McLuin, J.R., and Crowley, J., 1981, Transplantation system for determining the clonogenic survival of parenchymal hepatocytes exposed to ionizing radiation, Cancer Res., 41:3512.PubMedGoogle Scholar
  12. Jirtle, R.L., Michelopoulos, G., Strom, S.C., DeLuca, P.M., and Gould, M.N., 1984, The survival of parenchymal hepatocytes irradiated with low and high LET radiation, Br. J. Cancer, 49 (Suppl. VI):197.Google Scholar
  13. Kennedy, A.K., Fox, M., Murphy, G., and Little, J.B., 1980, On the relation between x-ray exposure and malignant transformation in C3H 10T1/2 cells, Proc. Natl. Acad. Sci. USA, 77:7262.PubMedCrossRefGoogle Scholar
  14. McMahon, B., Cole, P., and Brown, J., 1973, Etiology of human breast cancer: A review, J. Natl. Cancer Inst., 50:21.Google Scholar
  15. Medina, D., Shepherd, F., and Gropp, T., 1978, Enhancement of the tumorigenicity of preneoplastic mammary nodule lines by enzymatic dissociation, J. Natl. Cancer Inst., 60:1121.PubMedGoogle Scholar
  16. Miller, E.C., and Miller, J.A., 1974, Biochemical mechanisms of chemical carcinogenesis, in: “The Molecular Biology of Cancer,” p. 377, H. Busch, ed., Academic Press, New York.Google Scholar
  17. Mole, R.H., 1984, Dose-response relationships, in: “Radiation Carcinogenesis: Epidemiology and Biological Significance,” p. 403, J.D. Boice, and J.F. Fraumeni, eds., Raven Press, New York.Google Scholar
  18. Mulcahy, R.T., Gould, M.N., and Clifton, K.H., 1984, Radiation initition of thyroid cancer: A common cellular event, Int. J. Radiat. Biol., 45: 419CrossRefGoogle Scholar
  19. Mulcahy, R.T., Rose, D.P., Mitchen, J.M., and Clifton, K.H., 1980, Hormonal effects on the quantitative transplantation of monodispersed rat thyroid cells, Endocrinology, 106:1769.PubMedCrossRefGoogle Scholar
  20. Porter, E.H., Hewitt, H.B., and Blake, E.R., 1973, The transplantation kinetics of tumor cells, Br. J. Cancer, 27:55.PubMedCrossRefGoogle Scholar
  21. Sasaki, M., 1982, Current status of cytogenetic studies in animal tumors with special reference to non-random chromosome changes, Cancer Genet. Cytogenet., 5:153.PubMedCrossRefGoogle Scholar
  22. Terzaghi, M., Klein-Szanto, A. and Nettesheim, P., 1983, Effect of the promoter 12-O-tetradecanoylphorbol-13-acetate on the evolution of carcinogen-altered cell populations in tracheas initiated with 7, 12-dimethylbenz[a]anthracene, Cancer Res., 43:1461.PubMedGoogle Scholar
  23. Tokunaga, M., Land, C.E., Yamamoto, T., Asano, M., Tokuoka, S., Ezaki, H., Nishimori, I., and Fujikura, T., 1984, Breast cancer among atomic bomb survivors, in: “Radiation Carcinogenesis: Epidemiology and Biological Significance,” p. 45, J.C. Boice and J.F. Fraumeni, eds., Raven Press, New York.Google Scholar
  24. Waelbroeck-Van Gaver, C., 1969, Tumerus hypophysaires induites par les aestrogens chez le rat. II. Etude cytogenetique, Eur. J. Cancer, 5:119.CrossRefGoogle Scholar
  25. Wake, N., Slocum, H.K., Rustum, Y.M., Matsui, S., and Sandberg, A.A., 1981, Chromosomes and causation of human cancer and leukemia, KLIV. A method for chromosome analysis of solid tumors, Cancer Genet. Cytogenet., 3:1.PubMedCrossRefGoogle Scholar
  26. Watanabe, H., Gould, M.N., Mahler, P.A., Mulcahy, R.T., and Clifton, K.H., 1983, The influence of donor and recipient age on the quantitative transplantation of monodispersed rat thyroid cells, Endocrinology, 112:172.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Kelly H. Clifton
    • 1
  • Ken Kamiya
    • 1
  • R. Timothy Mulcahy
    • 1
  • Michael N. Gould
    • 1
  1. 1.Department of Human Oncology Wisconsin Clinical Cancer CenterUniversity of Wisconsin Medical SchoolMadisonUSA

Personalised recommendations