Advertisement

Rare Muon Decays and Lepton-Family Number Conservation

  • C. M. Hoffman
Part of the Ettore Majorana International Science Series book series (EMISS, volume 23)

Abstract

The muon was discovered in cosmic radiation in 1937.1 For several years it was believed to be the meson of Yukawa’s theory that was the carrier of the strong nuclear force: its mass (105.5 MeV/c2) is deceptively close to Yukawa’s predicted meson mass. It was only after it was found that the muon did not interact strongly and another particle (the pi meson) did that the real puzzle presented itself: what role does the muon play? This mystery was succinctly expressed by Rabi: “The Muon, Who Ordered That?”

Keywords

Gauge Boson Lepton Number Axial Magnetic Field Magnetic Spectrometer Muon Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. D. Anderson and S. H. Neddermeyer, Phys. Rev. 51, 884 (1937); andADSCrossRefGoogle Scholar
  2. C. Street and E. Stevenson, Phys. Rev. 51, 1005 (1937).Google Scholar
  3. 2.
    B. L. Ioffe, Sov. Phys. JETP 11, 1158 (1960); andMathSciNetGoogle Scholar
  4. H. Primakoff and S. P. Rosen, Phys. Rev. D 5, 1784 (1972).ADSCrossRefGoogle Scholar
  5. 3.
    S. Lokanathan and J. Stelnberger, Phys. Rev. 98, 240 (A) (1955).Google Scholar
  6. 4.
    J. Schwinger, Ann. Phys. 2, 407 (1957).MathSciNetADSMATHCrossRefGoogle Scholar
  7. 5.
    G. Feinberg, Phys. Rev. 110, 1482 (1958)ADSCrossRefGoogle Scholar
  8. P. L. Meyer and G. Salzman, Nuovo Cimento 14, 4214 (1959); andGoogle Scholar
  9. M. E. Ebel and F. J. Ernst, Nuovo Cimento 15, 173 (1960).CrossRefGoogle Scholar
  10. 6.
    E. J. Konopinski and H. M. Mahmoud, Phys. Rev. 92, 1045 (1953).ADSMATHCrossRefGoogle Scholar
  11. 7.
    J. Schwinger, Ref. 4; K. Nishijima, Phys. Rev. 108, 907 (1957); andADSCrossRefGoogle Scholar
  12. S. Bludman, Nuovo Cimento 9, 433 (1958).MathSciNetCrossRefGoogle Scholar
  13. 8.
    G. Feinberg and S. Weinberg, Phys. Rev. Lett. 6, 381 (1961).ADSCrossRefGoogle Scholar
  14. 9.
    B. Pontecorvo, JETP 10, 1236 (1960); andGoogle Scholar
  15. M. Schwartz, Phys. Rev. Lett. 4, 306 (1960).ADSCrossRefGoogle Scholar
  16. 10.
    G, Danby, J.-M. Gaillard, K. Goulianos, L. M. Lederman, N. Mistry, M. Schwartz, and J. Steinberger, Phys. Rev, Lett. 9, 36 (1967).ADSCrossRefGoogle Scholar
  17. 11.
    S. Frankel, W. Frati, I. Halpern, L. Holloway, W. Wales, and O. Chamberlain, Nuovo Cimento 27, 894 (1963).CrossRefGoogle Scholar
  18. 12.
    W. Pauli, 1933 (unpublished). Used by E. Fermi, Z. Physics 88, 161 (1934).ADSCrossRefGoogle Scholar
  19. 13.
    A. de Rujula, H. Georgi, and S. L. Glashow, Phys. Rev. D 12, 147 (1975).ADSCrossRefGoogle Scholar
  20. 14.
    T. D. Lee and C. N. Yang, Phys. Rev. 98, 101 (1955).CrossRefGoogle Scholar
  21. 15.
    S. L. Glashow, Nucl. Phys. 22, 579 (1961); A. Salam, in Elementary Particle Theory: Relativistic Groups and Analycity, Nobel Symposium No. 8, N. Svartholm, Ed. (Almquist and Wiksell, Stockholm, 1968), p. 367; andCrossRefGoogle Scholar
  22. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).ADSCrossRefGoogle Scholar
  23. 16.
    T.-P. Cheng and L.-F. Li, Phys. Rev. D 16, 1565 (1977)ADSCrossRefGoogle Scholar
  24. B. W. Lee, S. Pakvasa, R. E. Shrock, and H. Sugawara, Phys. Rev. Lett. 38, 937 (1977)ADSCrossRefGoogle Scholar
  25. B. W. Lee and R. E. Shrock, Phys. Rev. D 16, 1444 (1977)ADSCrossRefGoogle Scholar
  26. G. Altarelli, L. Baulieu, N. Cabibbo, L. Maiani, and R. Petronzio, Nucl. Phys. B 125, 285 (1977); andADSCrossRefGoogle Scholar
  27. W. J. Marciano and A. I. Sanda, Phys. Rev. Lett. 38, 1512 (1977).ADSCrossRefGoogle Scholar
  28. 17.
    J. D. Bjorken and S. Weinberg, Phys. Rev. lett. 38, 622 (1977); andADSCrossRefGoogle Scholar
  29. G. C. Branco, Phys. Lett. 68B, 455 (1977).ADSGoogle Scholar
  30. 18.
    Muon-number violation in models with horizontal gauge symmetries has been studied by T. Maehara and T. Yanagida, Lett. Nuovo Cimento 19, 424 (1977), Prog. Theor. Phys. 60, 822 (1978), and Prog. Theor. Phys. 61, 1434CrossRefGoogle Scholar
  31. M. A. B. Beg and A. Sirlin, Phys. Rev. Lett. 38, 1113 (1977)ADSCrossRefGoogle Scholar
  32. R. Cahn and H. Harari, Nucl. Phys. B 179, 135 (1980)ADSCrossRefGoogle Scholar
  33. I. Montvay, Z. Phys. C 7, 45 (1980)MathSciNetADSCrossRefGoogle Scholar
  34. O. Shanker, Phys. Rev. D 23, 1555 (1981), Nucl. Phys. B 185, 382 (1981); P. Herczeg, in Proceedings of the Workshop on Nuclear and Particle Physics at Energies Up to 31 GeV, Los Alamos, New Mexico, 1981, J. D. Bowman, L. S. Kisslinger, and R. R. Silbar, Eds. (Los Alamos National Laboratory document LA-8755-C, 1981), p. 58; andADSCrossRefGoogle Scholar
  35. D. R. T. Jones, G. L. Kane, and J. P. Leveille, Nucl. Phys. B 198, 45 (1982). See also O. Shanker, TRIUMF preprint TRI-PP-81-10 (1981). References to work dealing with other aspects of horizontal gauge symmetries can be found in the above papers.ADSCrossRefGoogle Scholar
  36. 19.
    Implications of extended technicolor theories on rare processes and some associated problems of these schemes are discussed in J. Ellis, M. K. Gaillard, D. V. Nanopoulos, and P. Sikivie, Nucl. Phys. B 182, 529 (1981)ADSCrossRefGoogle Scholar
  37. S. Dimopoulos and J. Ellis, Nucl. Phys. B 182, 505 (1981)ADSCrossRefGoogle Scholar
  38. J. Ellis, D. V. Nanopoulos, and P. Sikivie, Phys. Lett. 101B, 387 (1981)ADSGoogle Scholar
  39. S. Dimopoulos, S. Raby, and G. L. Kane, Nucl. Phys. B 182, 77 (1981)ADSCrossRefGoogle Scholar
  40. J. Ellis and P. Sikivie, Phys. Lett. 104B, 141 (1981); andADSGoogle Scholar
  41. A. Masiero, E. Papantonopoulos, and T. Yanagida, Phys. Lett. 115B, 229 (1982).ADSGoogle Scholar
  42. 20.
    Y. Tomozawa, Phys. Rev. D 25, 1448 (1982); andADSCrossRefGoogle Scholar
  43. E. J. Eichten, K. D. Lane, and M. E. Peskin, Phys. Rev. Lett. 50, 811 (1983).ADSCrossRefGoogle Scholar
  44. 21.
    Such is a subclass of models due to Pati and Salam based on [SU(2n)]4 (n ⩾ 3) [cf. V. Elias and S. Rajpoot, Phys. Rev. D 20, 2445 (1979)]; a recent view of the Pati-Salam models is given in J. C. Pati’s invited talk at the Int. Conf. on Baryon Nonconservation, Tata Institute of Fundamental Research, Bombay, India, 1982 (university of Maryland report 82-151, 1982). The unification scales to two loops have been calculated in these models by T. Goldman in Particles and Fields — 1981: Testing the Standard Model, proceedings of the meeting of the Division of Particles and Fields of the APS, Santa Cruz, California, C. A. Heusch and W. T. Kirk, Eds. (AIP, New York, 1982). He finds that for n = 4, 5, some muon-number-violating K decays may have measurable rates.ADSCrossRefGoogle Scholar
  45. 22.
    J. Ellis and D. V. Nanopoulos, Phys. Lett. 110B, 44 (1982).ADSGoogle Scholar
  46. 23.
    R. N. Mohapatra and G. Senjanoviĉ, Phys. Rev. D 23, 165 (1981); and RiazuddinADSCrossRefGoogle Scholar
  47. R. E. Marshak, and R. N. Mohapatra, Phys. Rev. D 24, 1310 (1981).ADSCrossRefGoogle Scholar
  48. 24.
    See, for example, S. M. Bilenky and B. Pontecorvo, Phys. Rev. 41, 225 (1978).Google Scholar
  49. 25.
    E. P. Hincks and B. Pontecorvo, Phys. Rev. 73, 257 (1948); andADSCrossRefGoogle Scholar
  50. R. D. Sard and E. J. Althaus, Phys. Rev. 74, 1364 (1948).ADSCrossRefGoogle Scholar
  51. 26.
    H. F. Davis, A. Roberts, and T. F. Zipf, Phys. Rev. Lett. 2, 211 (1959)ADSCrossRefGoogle Scholar
  52. D. Berley, J. Lee, and M. Bardon, Phys. Rev. Lett. _2, 357 (1959)ADSCrossRefGoogle Scholar
  53. T. O’Keefe, M. Rigby, and J. Wormaid, Proc. Phys. Soc. (London) 73, 951, (1959); V. Krestnikov, IX Annual Int. Conf. on High Energy Physics, Kiev (1959), unpublishedADSCrossRefGoogle Scholar
  54. J. Askin et al., Nuovo Cimento 14, 1266 (1959)Google Scholar
  55. S. Frankel, V. Hagopian, J. Halpern, and A. L. Whetstone, Phys. Rev. 118, 589 (1960)ADSCrossRefGoogle Scholar
  56. R. R. Crittenden, W. D. Walker, and J. Ballam, Phys. Rev. 121, 1823 (1961)ADSCrossRefGoogle Scholar
  57. S. Frankel et al., Nuovo Cimento 27, 894 (1963)CrossRefGoogle Scholar
  58. S. Parker, H. L. Anderson, and C. Rey, Phys. Rev. 133, B768 (1964); andADSCrossRefGoogle Scholar
  59. S. M. Korenchenko et al., Yad. Fiz, 13, 341 (1971).Google Scholar
  60. 27.
    S. Frankel, in Muon Physics, Vol. II, Academic Press, New York (1973).Google Scholar
  61. 28.
    H. P. Povel et al., Phys. Lett. 72B, 183 (1971); andADSGoogle Scholar
  62. A. Schaaf et al., Nucl. Phys. A 340, 249 (1980).ADSCrossRefGoogle Scholar
  63. 29.
    P. Depommier et al., Phys. Rev. Lett. 39, 1113 (1977).ADSCrossRefGoogle Scholar
  64. 30.
    J. D. Bowman et al., Phys. Rev. Lett. 42, 556 (1979); andADSCrossRefGoogle Scholar
  65. W. W. Kinnison et al., Phys. Rev. D 25, 2846 (1982).ADSCrossRefGoogle Scholar
  66. 31.
    S. M. Korenchenko et al., Ref. 26.Google Scholar
  67. 32.
    LAMPF Experiments 400/445, C. M. Hoffman, J. D. Bowman, and H. S. Matis, spokesmen. The collaborators are R. Bolton, J. D. Bowman, M. Cooper, J. Frank, D. Grosnick, A. Ha11in, P. Heusi, V. Highland, C. Hoffman, G. Hogan, E. B. Hughes, F. Mariam, H. Matis, R. Mischke, D. Nagle, V. Sandberg, G. Sanders, V. Sennhauser, R. Werbeck, R. Williams, S. Wilson, and S. C. Wright.Google Scholar
  68. 33.
    See, for example, R. E. Mischke, “Future LAMPF Experiments on Lepton-Number Nonconservation,” Procedures of Neutrino ′81, Maui (1981).Google Scholar
  69. 34.
    S. M. Korenchenko et al., JETP 43, 1 (1976).ADSGoogle Scholar
  70. 35.
    D. Yu Bardin, Ts. G. Istatkov, and G. B. Mitsel’Makher, Sov. J. Nucl. Phys. 15, 161 (1972); and P. Vogel, SINDRUM Note 5, SIN (1981) (unpublished).Google Scholar
  71. 36.
    W. Berti et al., SIN preprint PR-84-01 (1984).Google Scholar
  72. 37.
    O. Shanker, Phys. Rev. D 20, 1608 (1979).ADSCrossRefGoogle Scholar
  73. 38.
    P. Herczeg and C. M. Hoffman, LAUR-83-3573 (1983) and Phys. Rev. D (to be published).Google Scholar
  74. 39.
    A. Badertscher et al., Phys. Rev. Lett. 39, 1385 (1977), Lett. Nuovo Cimento 28, 401 (1980), and Nucl. Phys. A 377, 406 (1982).ADSCrossRefGoogle Scholar
  75. 40.
    M. Blecher et al., 1983 Annual Meeting of Division of Particles and Fields, Blacksburg, Virginia.Google Scholar
  76. 41.
    D. A. Bryman et al., Phys. Rev. Lett. 208, 1409 (1972).Google Scholar
  77. 42.
    J. D. Bowman, T.-P. Chang, L.-F. Li, and H. S. Matis, Phys. Rev. Lett. 41, 442 (1978).ADSCrossRefGoogle Scholar
  78. 43.
    G. Azuelos et al., Phys. Rev. Lett. 51, 164 (1983).ADSCrossRefGoogle Scholar
  79. 44.
    S. Willis et al., Phys. Rev. Lett. 44, 522 (1980).ADSCrossRefGoogle Scholar
  80. 45.
    W. C. Barber, B. Gittelman, D. C. Cheng, and G. K. O’Neill, Phys. Rev. Lett. 22, 902 (1969); andADSCrossRefGoogle Scholar
  81. J. J. Amato, P. Crane, V. W. Hughes, J. E. Rothberg, and P. A. Thompson, Phys. Rev. Lett. 21, 1709 (1968).ADSCrossRefGoogle Scholar
  82. 46.
    D. Bryman, Phys. Rev. D 26, 2538 (1983).ADSCrossRefGoogle Scholar
  83. 47.
    C. M. Hoffman, “Prospects in Lepton-Flavor Violation,” Proc. of the Elementary Particle Physics and Future Facilities Summer Study, Snowmass, Colorado (1982).Google Scholar
  84. 48.
    See, for example, P. Herczeg, “Symmetry-Violating Kaon Decays,” Proc. of the Kaon Factory Workshop, Vancouver (1979); and R. E. Shrock, “Rare K Decays as Probes of New Physics,” Proc. of the LAMPF II Workshop, Los Alamos (1983).Google Scholar
  85. 49.
    A. R. Clark et al., Phys. Rev. Lett. 26, 1667 (1971).ADSCrossRefGoogle Scholar
  86. 50.
    A. M. Diamant-Berger et al., Phys. Lett. 62B, 485 (1976).ADSGoogle Scholar
  87. 51.
    AGS Proposal 777, M. E. Zeller, spokesman (K+ → π+μe), and AGS Proposal 780, M. P. Schmidt, spokesman (kL 0 → μe).Google Scholar
  88. 52.
    K. G. Hayes et al., Phys. Rev. D 25, 2869 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • C. M. Hoffman
    • 1
  1. 1.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations