Advertisement

New Experimental Results on Muon Catalyzed Fusion in Low Density Deuterium-Tritium Gas

  • W. H. Breunlich
  • M. Cargnelli
  • P. Kammel
  • J. Marton
  • P. Pawlek
  • J. Werner
  • J. Zmeskal
  • K. M. Crowe
  • J. Kurch
  • R. H. Sherman
  • C. Petitjean
  • A. Janett
  • H. Bossy
  • W. Neumann
Part of the Ettore Majorana International Science Series book series (EMISS, volume 23)

Abstract

The general theoretical ideas for resonant formation of muonic hydrogen molecules have been discussed by G. Fiorentini at this school. Let us now take a closer look at this remarkable process, which is the starting point for the renewed interest in the field of muon catalyzed fusion. As an example Figure 1 presents the level scheme of the dμt formation process
$$\mu t + D_2 \to \left[ {\left( {d\mu t} \right)dee} \right]*$$
(1)
One should notice the different energy scales involved in this transition: some hundred eV on the muonic side (the extraordinary weakly bound djjt state, responsible for resonant formation, has a binding energy of only −640 meV), some hundred meV for the energy spacing between vibrational levels on the electronic side. Resonant molecule formation is only possible if the value of the thermal kinetic energy of the initial μt atoms (dashed region in Figure 1) allows a transition between the indicated levels. As this thermal energy is of the order of some meV (at low temperatures) experimental physics has a precise method of determining the energies for resonant formation by observing the rate of mesomolecule formation as a function of temperature. Due to the high accuracy reached, tiny energy splittings, which usually are completely negligible on the muonic energy scale, become important (see Figure 1). On the muonic side these small energy splittings are dominated by the hyperfine structure of muonic atoms and molecules. The sensitivity of resonant molecular formation to these splittings is particularly interesting, because hyperfine effects in muonic hydrogen have not been accessible to direct experimental observation before.

Keywords

Liquid Hydrogen Tritium Concentration Muonic Atom Muonic Hydrogen Fusion Neutron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. I. Vinitskii, Sov.Phys.JETP, 47:444 (1978).ADSGoogle Scholar
  2. 2.
    V. M. Bystritskii, Sov.Phys.JETP, 49:232 (1979).ADSGoogle Scholar
  3. 3.
    P. Kammel, Phys.Lett., 112B:319 (1982).ADSGoogle Scholar
  4. 4.
    P. Kammel, Phys.Rev., 28A:2611 (1983).ADSGoogle Scholar
  5. 5.
    J. Zmeskal, Atomkernenergie/Kerntechnik, 43:193 (1983).Google Scholar
  6. 6.
    W. Berti, Atomkernenergie/Kerntechnik, 43:185 (1983).Google Scholar
  7. 7.
    V. M. Bystritskii, Sov.Phys.JETP, 53:877 (1981).Google Scholar
  8. 8.
    S. E. Jones, Phys.Rev.Lett., 51:1757 (1983).ADSCrossRefGoogle Scholar
  9. 9.
    P. Kammel, Atomkernenergie/Kerntechnik, 43:195 (1983).Google Scholar
  10. 10.
    L. I. Ponomarev, Atomkernenergie/Kerntechnik, 43:175 (1983).Google Scholar
  11. 11.
    A. V. Matveenko, Sov.Phys.JETP, 32:871 (1971).ADSGoogle Scholar
  12. 12.
    Note, however our recent experimental results for a similar process[6] and possible theoretical explanations[10].Google Scholar
  13. 13.
    The tritium was provided by the U.S. Department of Energy.Google Scholar
  14. 14.
    A time dependence of accidentals results from the delayed electron coincidence condition used and is discussed in [4].Google Scholar
  15. 15.
    S. S. Gershtein, Sov.Phys.JETP, 51:1053 (1980).ADSGoogle Scholar
  16. 16.
    M. Leon, Phys.Rev.Lett., 52:605 (1984).ADSCrossRefGoogle Scholar
  17. 17.
    Compare the theoretical explanation for hyperfine transitions in H/D mixtures mentioned in [10].Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • W. H. Breunlich
    • 1
  • M. Cargnelli
    • 1
  • P. Kammel
    • 1
  • J. Marton
    • 1
  • P. Pawlek
    • 1
  • J. Werner
    • 1
  • J. Zmeskal
    • 1
  • K. M. Crowe
    • 2
  • J. Kurch
    • 2
  • R. H. Sherman
    • 3
  • C. Petitjean
    • 4
  • A. Janett
    • 4
  • H. Bossy
    • 5
  • W. Neumann
    • 5
  1. 1.Österreichische Akademie der WissenschaftenWienAustria
  2. 2.Lawrence Berkeley Lab.Univ. of CaliforniaBerkeleyUSA
  3. 3.Los Alamos National Lab.Los AlamosUSA
  4. 4.Schweizerisches Inst. für NuklearforschungVilligenSwitzerland
  5. 5.Physik Dept.Technische Univ.München, GarchingGermany

Personalised recommendations