Different Facets of Muonic Molecules

  • Giovanni Fiorentini
Part of the Ettore Majorana International Science Series book series (EMISS, volume 23)


Nuonic molecules ((X- μ-X’); X, X’ = p,d or t) are in essence shrinked versions of the H2 + molecular ion, with a typical scale of length given by the muon Bohr radius, aμ = ao me/mμ ≈ 250 fm, and with binding energies of up to few hundreds of eV. They are interesting by itself as a pure three body Coulomb problem, which can be studied, both theoretically and experimentally, to a high degree of precision. Beyond this, the study of muonic molecules is particularly important in connection with several fields of physics: the study of muon capture, μ + p → υ + n, when the muon is bound in the (p-μ-p) molecule, is important in order to determine basic parameters of the weak interaction theory. Study of the two mirror fusion reactions,
$$d + d \to {}^3He + n$$
$$d + d \to t + p$$


Fusion Reaction Nucleon Nucleon Muon Capture Nuclear Fusion Reaction Muonic Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ya.B. Zeldovich and S.S. Gerstein, Usp. Fiz. Nauk. 71:581 (1960), (English transi. Sov. Phys. Uspekhi 3:593(1961).Google Scholar
  2. 2.
    S.S. Gerstein and L.I. Ponomarev, in “Muon Physics”, V.W. Hghes and C.S. Wu, eds., Academic Press, New York (1975).Google Scholar
  3. 3.
    V.P. Dzhelepov, Atomnaja Energija 14:27 (1953).Google Scholar
  4. 4.
    E.H.S. Burhop, in “Electron and Ionic impact Phenomena”, H.S.W. Massey, E.H.S. Burhop and H.G. Gilbody, eds., Oxford (1974).Google Scholar
  5. 5.
    A. Bertin, A. Vitale and A. Placci, Nuovo Cimento 5:423(1975).Google Scholar
  6. 6.
    A. Bertin et al., Nuovo Cimento 72A:225 (1982).ADSGoogle Scholar
  7. 7.
    “Mesons in Matter”, Proceedings of the Int. Symposium on Meson Chemistry and Mesomolecular Processes in Matter, 7–10 June 1977.Google Scholar
  8. 8.
    L.I. Ponomarev, in “Proceedings of the 6th Int. Conference on Atomic Physics”, Riga 17–22 August 1978, Plenum, New York (1979).Google Scholar
  9. 9.
    S.I. Vinitsky and L. I. Ponomarev, Physics of Elementary Particles and Atomic Nuclei 13:1336 (1982).Google Scholar
  10. 10.
    S. Tesh, Kernenergie 25:97(1981).Google Scholar
  11. 11.
    J. Meyer-ter-Vehn, Physik. Blätter 35:211 (1979).Google Scholar
  12. 12.
    L.I. Ponomarev, in Proceedings of the 10th European Conference on Controlled Fusion and Plasma Physics, Moscow, 14–19 September 1981.Google Scholar
  13. 13.
    L. Bracci and G. Fiorentini, Phys. Reports 86:170 (1982).ADSCrossRefGoogle Scholar
  14. 14.
    J. Rafelski, in “Exotic Atoms’ 79”, K. Crowe et al., eds, Plenum, New York (1980).Google Scholar
  15. 15.
    W.H. Breunlich, Nucl. Phys. 353A:201 (1981).ADSGoogle Scholar
  16. 16.
    G. Fiorentini, Nucl. Phys. 374A:607 (1982).ADSGoogle Scholar
  17. 17.
    L. I. Ponomarev, to be published in the Proceedings of the 3rd International Conference on Emerging Nuclear energy systems, Helsinki, Finland, June 1983.Google Scholar
  18. 18.
    V. Melezhik et al., JETP 52:353(1981), andGoogle Scholar
  19. S. I. Vinitsky et al., JETP 55:400(1982). For a comprehensive review of the methods of calculation see S. Vinitsky and L. Ponomarev, Sov. Jour. of Part. and Nuclei 13:557(1982).Google Scholar
  20. 19.
    D.D. Bakalov et al., JETP 52:1629(1981).Google Scholar
  21. 20.
    L.I. Ponomarev and M.P. Faifman, JETO 44:886(1976).ADSGoogle Scholar
  22. 21.
    S. Vinitsky et al., JETP 47:444(1978).ADSGoogle Scholar
  23. 22.
    D.D. Bakalov et al., Nucl. Phys. 384A:302(1982).ADSGoogle Scholar
  24. 23.
    H. Primakoff, in “Muon Physics”, C.S. Wu and W.H. Hughes, eds., Academic Press, New York (1975).Google Scholar
  25. 24.
    E. Zavattini, in “Muon Physics”, C.S. Wu and W.H. Hughes, eds. Academic Press, New York (1975).Google Scholar
  26. 25.
    S. Weinberg, Phys. Rev. Letters 4:585(1976).CrossRefGoogle Scholar
  27. 26.
    G. Bardin et al., Nucl. Phys. 352A:365(1981)ADSGoogle Scholar
  28. G. Bardin et al., Phys. Letters 104B:320(1981). See also G. Bardin, Ph.D. Thesis, Univ. of Paris-Sud (1982) and J. Martino, Ph.D. Thesis, Univ. of Paris-Sud (1982).ADSGoogle Scholar
  29. 27.
    V.B. Bystritsky et al., JETP 49:232(1979).ADSGoogle Scholar
  30. 28.
    P. Kammel et al., Phys. Letters 112B:319(1979) andADSGoogle Scholar
  31. P. Kammel et al. Phys. Rev. 28A:2611(1983).ADSGoogle Scholar
  32. 29.
    L. Bracci, G. Fiorentini and R. Tripiccione, Nucl. Phys. 217B: 215(1983).ADSCrossRefGoogle Scholar
  33. 30.
    L.N. Bogdanova et al. Phys. Letters 155B:171(1982).ADSGoogle Scholar
  34. 31.
    D.V. Balin et al., Phys. Letters 141B:173(1984).ADSGoogle Scholar
  35. 32.
    S.S. Gerstein and L.I. Ponomarev, Phys. Letters 72B:80(1977).ADSGoogle Scholar
  36. 33.
    L.W. Alvarez et al., Phys. Rev. 195:1127(1957). See also L.W. Alvarez, in Adventures in Experimental Physics” α:72 (1972).ADSCrossRefGoogle Scholar
  37. 34.
    V.M. Bystritsky et al. Phys. Letters 94B:476(1980).ADSGoogle Scholar
  38. 35.
    S. Jones et al., Phys. Rev. Letters 51:1157(1983).Google Scholar
  39. 36.
    S.S. Gerstein et al., JETP 53:872(1981)Google Scholar
  40. 37.
    L. Bracci and G. Fiorentini, Nucl. Phys. 364A:383(1981).ADSGoogle Scholar
  41. 38.
    Yu. V. Petrov, Nature 285:466(1980) and in Proceedings of the XIV LNPI Winter School, Leningrad (1978).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Giovanni Fiorentini
    • 1
  1. 1.Dipartimento di Fisica dell’UniversitàIstituto Nazionale di Fisica NuclearePisaItaly

Personalised recommendations