Advertisement

Photon-Photon Interaction Detection via the Vacuum Birefringence Induced by a Magnetic Field: Status of the Experiment

  • E. Iacopini
Part of the Ettore Majorana International Science Series book series (EMISS, volume 23)

Abstract

The light-by-light scattering is a process which cannot be described by classical electrodynamics, because of the linear structure of the Maxwell equations. The linearity of the equations is a consequence of the fact that electromagnetic waves do not possess any electromagnetic structure, such as electric charge, magnetic moment, etc. This is not so in the case of gravity waves, for example, where the “charge role” is played by the energy-momentum density tensor, which is carried also by the wave itself; and this is why Einstein’s equations are intrinsically non-linear.

Keywords

Transverse Magnetic Field Feynman Graph Indirect Observation Optical Delay Line Extinction Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Karplus and M. Neuman, Phys. Rev. 80:380 (1950).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    V. Costantini, B. De Tollis and G. Pistoni, Nuovo Cimento 2A:733 (1971).ADSGoogle Scholar
  3. 3.
    H. Euler and W. Heisenberg, Z. Phys. 98:718 (1936).Google Scholar
  4. 4.
    V.S. Weisskopf, Mat.-Fys. Medd. Dan. Vidensk. Selsk. 14:6 (1936).Google Scholar
  5. 5.
    J. Schwinger, Phys. Rev. 82:664 (1951).MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    R. Novick, M.C. Weisskopf, J.R.P. Angel and P.G. Sutherland, Astr. J. 215:L117 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    J.M. Jauch and F. Rohrlich, The theory of photons and electrons (Springer-Verlag, New York, 1976), 2nd edn., p. 298.Google Scholar
  8. 8.
    J.H. Taylor, L.A. Fowler and P.M. McCulloch, Nature 277:437 (1979).ADSCrossRefGoogle Scholar
  9. 9.
    J. Bailey, K. Borer, F. Combley, H. Drumm, C. Eck, F.J.M. Farley, J.H. Field, W. Flegel, P.M. Hattersley, F. Krienen, F. Lange, G. Lebée, E. McMillan, G. Petrucci, E. Picasso, O. Runolfsson, W. von Rüden, R.W. Williams and S. Wojcicki, Nucl. Phys. B150:1 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    J. Calmet, S. Narison, M. Perrottet and E. de Rafael, Rev. Mod. Phys. 49:21 (1977).ADSCrossRefGoogle Scholar
  11. 11.
    M. Delbruck, Z. Phys. 84:144 (1933).Google Scholar
  12. 12.
    B. De Tollis and G. Pistoni, Nuovo Cimento 42A:499 (1977).ADSGoogle Scholar
  13. 13.
    P. Papatzacos and K. Mork, Phys. Rep. 21:81 (1975).ADSCrossRefGoogle Scholar
  14. 14.
    J.M. Jauch and F. Rohrlich, The theory of photons and electrons (Springer-Verlag, New York, 1976), 2nd edn., p. 466.Google Scholar
  15. 15.
    S. Kahane, T. Bar-Noy and R. Moreh, Nucl. Phys. A280:180 (1977).ADSGoogle Scholar
  16. 16.
    E. Iacopini and E. Zavattini, Phys. Lett. 85B:151 (1979). E. Iacopini and E. Zavattini, Experimental project to detect the vacuum birefringence induced by a magnetic field, preprint CERN-EP/78-162 (1978).ADSGoogle Scholar
  17. 17.
    S. Carusotto, E. Iacopini, P. Lazeyras, M. Morpurgo, E. Polacco, F. Scuri, B. Smith, G. Stefanini and E. Zavattini, CERN Proposal D2 (1980), and Addendum (1983).Google Scholar
  18. 18.
    S.L. Adler, Ann. Phys. (NY) 87:559 (1971).Google Scholar
  19. 19.
    M. Born and L. Infeld, Proc. R. Soc. London Ser. A 143:410 (1934).ADSMATHCrossRefGoogle Scholar
  20. 20.
    E. Iacopini and E. Zavattini, Nuovo Cimento 78B:38 (1983).ADSGoogle Scholar
  21. 21.
    W.H. Watson, Proc. R. Soc. London Ser. A 125:345 (1929).ADSCrossRefGoogle Scholar
  22. 22.
    A.M. Grassi Strini, G. Strini and G. Tagliaferri, Phys. Rev. 19D:2330 (1979).ADSGoogle Scholar
  23. 23.
    E. Iacopini, B. Smith, G. Stefanini and E. Zavattini, Nuovo Cimento 61B:21 (1981).ADSGoogle Scholar
  24. 24.
    E. Iacopini, G. Stefanini and E. Zavattini, Appl. Phys. 32A:63 (1983).ADSGoogle Scholar
  25. 25.
    S. Carusotto, E. Iacopini, E. Polacco, G. Stefanini and E. Zavattini, Opt. Commun. 42:104 (1982).ADSCrossRefGoogle Scholar
  26. 26.
    S. Carusotto, E. Iacopini, E. Polacco, G. Stefanini, F. Scuri and E. Zavattini, preprint CERN-EP/83-181 (1983), to be published in J. Opt. Soc. Amer. Google Scholar
  27. 27.
    D.R. Herriott, H. Kogelnik and R. Kompfner, Appl. Opt. 3:523 (1964).ADSCrossRefGoogle Scholar
  28. 28.
    D.R. Herriott and J.J. Schulte, Appl. Opt. 4:883 (1965).Google Scholar
  29. 29.
    M.A. Bouchiat and L. Pottier, Appl. Phys. B29:43 (1982).ADSGoogle Scholar
  30. 30.
    J.H. Cole, Appl. Opt. 19:1023 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • E. Iacopini
    • 1
    • 2
    • 3
  1. 1.Dipartimento di FisicaUniversità di PisaItaly
  2. 2.Sezione INFN di PisaItaly
  3. 3.CERNGenevaSwitzerland

Personalised recommendations