Advertisement

Search for Muon-Hadron Interactions from Muonic X-rays

  • H. J. Leisi
Part of the Ettore Majorana International Science Series book series (EMISS, volume 23)

Abstract

I would like to report on a number of muonic X-ray experiments which were designed to investigate the muonnucleus interaction. In earlier days similar experiments were used as a test of the vacuum polarization effect of QED. With the advent of the unified electroweak interaction we expect muon-nucleon forces in addition to those of QED. One, of course, is the “heavy-light” interaction mediated by the vector boson Zo. Due to the large mass of the Zo the range of this force is, however, too short to result in a measurable energy shift in muonic atoms. An additional force would be mediated by the Higgs boson which also has definite coupling g to the leptons and to the quarks. In the minimal version of the theory (one Higgs doublet) we have
$$g^2 = m_f^2 \sqrt 2 G_F$$
(1)
where mf is the fermion mass and GF the Fermi coupling constant. The mass of the Higgs boson has a lower bound (under rather general assumptions) of about 10 GeV. This force is also extremely weak. One can enlarge the Higgs sector of the theory. In fact, most GUT’s and all supersymmetric models need at least two Higgs doublets. In such schemes there can be Higgs bosons much lighter than 10 GeV and their couplings to the fermions can be enhanced1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.S. Willey, Phys. Rev. Lett. 52:585 (1984)ADSCrossRefGoogle Scholar
  2. R.M. Barnett, G. Senjanović, L. Wolfenstein, and D. Wyler, Phys. Lett. 136B:191 (1984).ADSGoogle Scholar
  3. 2.
    I. Beltrami, “New precision measurements of the muonic 3d5/2−2p3/2 X-ray transition in 24Mg and 28Si: Vacuum polarization test and search for muon-hadron interactions beyond QED”, Thesis ETH Zurich, Nr. 7062 (1982) (unpublished), and to be published.Google Scholar
  4. 3.
    W. Ruckstuhl, B. Aas, W. Beer, I. Beltrami, F.W.N. de Boer, K. Bos, P.F.A. Goudsmit, U. Kiebele, H.J. Leisi, G. Strassner, A. Vacchi, and R. Weber, Phys. Rev. Lett. 49:859 (1982).ADSCrossRefGoogle Scholar
  5. 4.
    W. Ruckstuhl, “Search for new muon-nucleon interactions in s states of muonic atoms”, Thesis ETH Zurich, Nr. 7061 (1982) (unpublished), and to be published.Google Scholar
  6. 5.
    F.W.N. de Boer, B. Aas, P. Baertschi, W. Beer, I. Beltrami, K. Bos, P.F.A. Goudsmit, U. Kiebele, H.J. Leisi, W. Ruckstuhl, G. Strassner, A. Vacchi, and R. Weber, to be published.Google Scholar
  7. 6.
    B. Aas, W. Beer, I. Beltrami, P. Ebersold, R. Eichler, Th. von Ledebur, H.J. Leisi, W. Ruckstuhl, W.W. Sapp, A. Vacchi, J. Kern, J.-A. Pinston, W. Schwitz, and R. Weber, Nucl. Phys. A375:405 (1982).ADSGoogle Scholar
  8. 7.
    R.D. Delattes, E.G. Kessler, W.C. Sauder, and A. Henins, Ann. Phys. (N.Y.) 129:378 (1980).ADSCrossRefGoogle Scholar
  9. 8.
    I. Sick, Phys. Lett. 116B:212 (1982), and private communication.ADSGoogle Scholar
  10. 9.
    R. Rosenfelder, Nucl. Phys. A393:301 (1982)ADSGoogle Scholar
  11. J. Bernabéu, and T.E.O. Ericson, Z. Phys. A309:213 (1983).ADSGoogle Scholar
  12. 10.
    W. Ruckstuhl, “MURKS, ein Programm zur Berechnung von Korrekturen zu den Bindungsenergien in myonischen Atomen”, LHE-report, ETH Zurich (1982).Google Scholar
  13. 11.
    W. Reuter, G. Fricke, K. Merle, and H. Miska, Phys. Rev. C26:806 (1982).ADSGoogle Scholar
  14. 12.
    S. Barshay, Phys. Rev. D7:2635 (1973), and Phys. Lett. 37B:397 (1971).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • H. J. Leisi
    • 1
  1. 1.Institut für Mittelenergiephysik der ETH-ZSINVilligenSwitzerland

Personalised recommendations