Expression of Cloned Immunoglobulin Genes

  • Frederick W. Alt


The variable region of immunoglobulin (Ig) heavy and light chain genes is encoded by multiple genetic elements. Over the past several years, intensive study has yielded remarkable new insights into both the mechanism by which these different elements are assembled to form the complete gene and the numerous types of diversification processes that occur during the assembly of these elements. In addition, this period has also witnessed the development of new technologies for isolating, expressing, and potentially even creating functional Ig genes. Among these are cell transformation procedures for expressing cloned genes in cell lines, germ-line introduction procedures for expressing cloned genes in the animal, and the development of cell lines that are active in immunoglobulin gene recombination processes and will assemble introduced immunoglobulin gene segments into complete genes. Together, these advances potentially offer many novel methods to produce natural or modified Ig gene products. In this context, the purpose of this chapter is to review what is known about the assembly and expression of endogenous and introduced Ig genes.


Heavy Chain Gene Segment Immunoglobulin Gene Immunoglobulin Heavy Chain Heavy Chain Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tonegawa, S., 1983, Somatic generation of antibody diversity, Nature 302:575–581.PubMedCrossRefGoogle Scholar
  2. 2.
    Early, P., Huang, H., Davis, M., Calame, K., and Hood, L., 1980, An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D and JH, Cell 19:981–992.PubMedCrossRefGoogle Scholar
  3. 3.
    Sakano, H., Maki, R., Kurosawa, Y., Roeder, W., and Tonegawa, S., 1980, Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy chain genes, Nature 266:676–683.CrossRefGoogle Scholar
  4. 4.
    Ravetch, J. V., Siebenlist, U., Korsmeyer, S., Waldmann, T., and Leder, P., 1981, Structure of the human immunoglobulin (x locus: Characterization of embryonic and rearranged J and D genes, Cell 27:583–591.Google Scholar
  5. 5.
    Wood, C., and Tonegawa, S., 1983, Diversity and joining segments of mouse immunoglobulin heavy chain genes are closely linked and in the same orientation: Implications for the joining mechanism, Proc. Natl. Acad. Sci. USA 80:3030–3034.PubMedCrossRefGoogle Scholar
  6. 6.
    Brodeur, P., and Riblet, R., 1984, The immunoglobulin heavy chain variable region (Igh-V) locus in the mouse, Eur. J. Immunol. 14:922–930.PubMedCrossRefGoogle Scholar
  7. 7.
    Alt, F. W., Yancopoulos, G. D., Blackwell, T. K., Wood, C., Thomas, E., Boss, M., Coffman, R., Rosenberg, N., Tonegawa, S., and Baltimore, D., 1984, Ordered rearrangement of immunoglobulin heavy chain variable region segments, EMBO J. 3:1209–1219.PubMedGoogle Scholar
  8. 8.
    Kurosawa, Y., and Tonegawa, S., 1982, Organization, structure and assembly of immunoglobulin heavy chain diversity (D) DNA segments, J. Exp. Med. 155:201–218.PubMedCrossRefGoogle Scholar
  9. 9.
    Alt, F. W., and Baltimore, D., 1982, Joining of immunoglobulin heavy chain gene segments: Implications from a chromosome with evidence of three D-JH fusions, Proc. Nati. Acad. Sci. USA 79:4118–4122.CrossRefGoogle Scholar
  10. 10.
    Brack, C., Hirama, M., Lenhard-Schuller, R., and Tonegawa, S., 1978, A complete immunoglobulin gene is created by somatic recombination, Cell 15:1–14.PubMedCrossRefGoogle Scholar
  11. 11.
    Sakano, H., Huppi, K., Heinrich, G., and Tonegawa, S., 1979, Sequences at the somatic recombination sites of immunoglobulin light chain genes, Nature 280:288–294.PubMedCrossRefGoogle Scholar
  12. 12.
    Max, E., Seidman, J., and Leder, P., 1979, Sequences of five potential recombination sites encoded close to an immunoglobulin K constant region gene, Proc. Natl. Acad. Sci. USA 76:3450–3454.PubMedCrossRefGoogle Scholar
  13. 13.
    Alt, F., Rosenberg, N., Lewis, S., Thomas, E., and Baltimore, D, 1981, Organization and reorganization of immunoglobulin genes in A—MuLV—transformed cells: Rearrangement of heavy but not light chain genes, Cell 27:381–390.PubMedCrossRefGoogle Scholar
  14. 14.
    Yaiota, Y., and Honjo, T., 1980, Deletion of immunoglobulin heavy chain genes from expressed allelic chromosome, Nature 286:856–858.Google Scholar
  15. 15.
    Maki, R., Traunecker, A., Sakano, H., Roeder, W., and Tonegawa, S., 1980, Exon shuffling generates an immunoglobulin heavy chain gene, Proc. Natl. Acad. Sci. USA 77:2138–2142.PubMedCrossRefGoogle Scholar
  16. 16.
    Davis, M., Calame, K., Early, P., Livant, D., Joho, R., Weissman, I., and Hood, L., 1980, An immunoglobulin heavy-chain gene is formed by at least two recombinational events, Nature 283:733–742.PubMedCrossRefGoogle Scholar
  17. 17.
    Shimizu, A., Takahashi, N., Yaiota, Y., and Honjo, T., 1982, Organization of the constant-region gene family of the mouse immunoglobulin heavy chain, Cell 248:499–506.CrossRefGoogle Scholar
  18. 18.
    Shimizu, A., and Honjo, T., 1984, Immunogulin class switching, Cell 36:801–803.PubMedCrossRefGoogle Scholar
  19. 19.
    Lewis, S., Gifford, A., and Baltimore, D., 1984, Joining of VK to JK gene segments in a retroviral vector introduced into lymphoid cells, Nature 308:425–428.PubMedCrossRefGoogle Scholar
  20. 20.
    Blackwell, T. K., and Alt, F. W., 1984, Site-specific recombination between immunoglobulin D and Jh segments that were introduced into the genome of a murine pre-B cell line, Cell 37:105–112.PubMedCrossRefGoogle Scholar
  21. 21.
    Lewis, S., Rosenberg, N., Alt, F., and Baltimore, D., 1982, Continuing kappa-gene rearrangement in a cell line transformed by Abelson murine leukemia virus, Cell 30:807–816.PubMedCrossRefGoogle Scholar
  22. 22.
    Yaoita, Y., Matsuami, N., Choi, C. Y., Sugiyama, H., Kishimoto, T., and Honjo, T., 1983, The D-Jh complex is an intermediate to the complete immunoglobulin heavy-chain V-region gene, Nucleic Acids Res. 11:7303–7315.PubMedCrossRefGoogle Scholar
  23. 23.
    Yancopoulos, G. D., Desiderio, S. V., Paskind, M., Kearney, J. F., Baltimore, D., and Alt, F. W., 1984, Preferential utilization of the most JH-proximal VH gene segments in pre-B cell lines, Nature 311:727–733.PubMedCrossRefGoogle Scholar
  24. 24.
    Desiderio, S., Yancopoulos, G. D., Paskind, M., Thomas, E., Boss, M., Alt, F., and Baltimore, D., 1984, VH gene assembly in cultured A-MuLV transformants, Nature 311:752–755.PubMedCrossRefGoogle Scholar
  25. 25.
    Southern, P., and Berg, P., 1982, Transformation of mammalian cells to antibiotic resistance with a bacterial gene under the control of the SV 40 early region promotor, J. Mol. Appl. Genet. 1:327–341.PubMedGoogle Scholar
  26. 26.
    Robins, D. M., Ripley, S., Henderson, A. S., and Axel, R., 1981, Transforming DNA integrates into the host chromosome, Cell 23:29–39.PubMedCrossRefGoogle Scholar
  27. 27.
    Blackwell, T. K., Yancopoulos, G. D., and Alt, F. W., 1984, Joining of immunoglobulin heavy chain variable region gene segments in vivo and within a recombination substrate, in: Molecular Biology of Development UCLA Symposia on Molecular and Cell Biology, Volume 19, Alan R. Liss, New York, pp. 537–547.Google Scholar
  28. 28.
    Mulligan, R. C., and Berg, P., 1981, Selection for animal cells that express the E. coJi gene coding for xanthine guanine phosphoribosyl transferase, Proc. Natl.Acad. Sci. USA 78:2072–2076.CrossRefGoogle Scholar
  29. 29.
    Mann, R., Mulligan, R., and Baltimore, D., 1983, Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus, Cell 33:153–159.PubMedCrossRefGoogle Scholar
  30. 30.
    Desiderio, S., and Baltimore, D., 1983, Double-stranded cleavage by cell extracts near recom-binational signal sequences of immunoglobulin genes, Nature 308:860–862.CrossRefGoogle Scholar
  31. 31.
    Kataoka, T., Kondo, S., Nishi, M., Kodaira, M., and Honjo, T., 1984, Isolation and characterization of endonuclease J: A sequence-specific endonuclease cleaving immunoglobulin genes, Nucleic Acids Res. 12:5995–6010.PubMedCrossRefGoogle Scholar
  32. 32.
    Schibler, U., Marcu, K. B., and Perry, R. P., 1978, The synthesis and processing of mRNAs specifying heavy and light chain immunoglobulins in MPC-11, Cell 15:1495–1509.PubMedCrossRefGoogle Scholar
  33. 33.
    Clarke, C., Berenson,]., Goverman, J., Crews, S., Siu, C., Boyer, P., and Calame, K., 1982, An immunoglobulin promoter region is unaltered by DNA rearrangement and somatic mutation during B cell development, Nucleic Acids Res. 10:7731–7749.PubMedCrossRefGoogle Scholar
  34. 34.
    Neuberger, M. S., 1983, Expression and regulation of immunoglobulin heavy chain gene transacted in lymphoid cells, EMBO J. 2:1373–1378.PubMedGoogle Scholar
  35. 35.
    Parslow, T. C., Blair, D. L., Murphy, W. J., and Granner, D. K., 1984, Structure of the 5’ ends of immunoglobulin genes: A novel conserved sequence, Proc.Natl. Acad. Sci. USA 81:2650–2654.CrossRefGoogle Scholar
  36. 36.
    Falkner, F. G., and Zachau, H. G., 1984, Correct transcription of an immunoglobulin kappa gene requires an upstream fragment containing conserved sequence elements, Nature 310:71–74.PubMedCrossRefGoogle Scholar
  37. 37.
    Yancopoulos, G., and Alt, F. W., 1985, Developmentally controlled and tissue-specific expression of unrearranged VH gene segments, Cell 40:269–279.CrossRefGoogle Scholar
  38. 38.
    Mather, E. L., and Perry, R. P., 1981, Transcriptional regulation of immunoglobulin V genes, Nucleic Acids Res. 9:6855–6867.PubMedCrossRefGoogle Scholar
  39. 39.
    Kemp, D., Harris, A., Cory, S., and Adams, J., 1980, Expression of the Ig Cμ gene in mouse T and B lymphoid and myeloid cell lines, Proc. Natl Acad. Sci. USA 77:2876–2880.PubMedCrossRefGoogle Scholar
  40. 40.
    Van Ness, B. J., Weigert, M., Coleclough, C., Mather, E. L., Kelley, D. E., and Perry, R. P., 1981, Transcription of the unrearranged mouse CK locus sequence of the initiation region and comparison of activity with a rearranged V.-C. gene, Cell 27:593–602.PubMedCrossRefGoogle Scholar
  41. 41.
    Alt, F. W., Rosenberg, N., Enea, V., Siden, E., and Baltimore, D., 1982, Multiple immunoglobulin heavy-chain transcripts in Abelson murine leukemia virus-transformed cell lines, Mol. Cell. Biol. 2:386–400.PubMedGoogle Scholar
  42. 42.
    Alt, F. W., Rosenberg, N., Casanova, R. J., Thomas, E., and Baltimore, D., 1982, Immunoglobulin heavy-chain expression and class switching in a murine leukemia cell line, Nature 296:325–331.PubMedCrossRefGoogle Scholar
  43. 43.
    Gruss, P., 1984, Magic enhancers, DNA 3:1–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Gillies, S. C., Morrison, S. L., Oi, V. T., and Tonegawa, S., 1983, A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene, Cell 33:717–728.PubMedCrossRefGoogle Scholar
  45. 45.
    Banerij, J., Olson, L., and Schaffner, W., 1983, A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes, Cell 33:729–740.CrossRefGoogle Scholar
  46. 46.
    Queen, C., and Baltimore, D., 1983, Immunoglobulin gene transcription is activated by downstream sequence elements, Cell 33:741–748.PubMedCrossRefGoogle Scholar
  47. 47.
    Mercola, M., Wang, X., Olsen, J., and Calame, K., 1983, Transcriptional enhancer elements in the mouse immunoglobulin heavy chain locus, Science 221:663–665.PubMedCrossRefGoogle Scholar
  48. 48.
    Blattner, F. R., and Tucker, P. W., 1984, The molecular biology of immunoglobulin D, Nature 307:417–422.PubMedCrossRefGoogle Scholar
  49. 49.
    Mather, E. L., Nelson, K. J., Haimovich, J., and Perry, R. P., 1984, Mode of regulation of immunoglobulin (JL- and 8-chain expression varies during B-lymphocyte maturation, Cell 36:329–338.PubMedCrossRefGoogle Scholar
  50. 50.
    Earley, P., Rogers, J., Davis, M., Calame, K., Bond, M., Wall, R., and Hood, L., 1980, Two mRNAs can be produced from a single immunoglobulin µ gene by alternative RNA processing pathways, Cell 20:313–320.CrossRefGoogle Scholar
  51. 51.
    Rogers, J. W., Earley, P., Carter, C., Calame, K., Bond, M., Hood, L., and Wall, R., 1980, Two RNAs with different 3’ ends encode membrane-bound and secreted forms of immunoglobulin (x chain, Cell 20:303–312.PubMedCrossRefGoogle Scholar
  52. 52.
    Alt, F. W. Bothwell, A. L. M., Knapp, M., Siden, E., Mather, E., Koshland, M., and Baltimore, D., 1980, Synthesis of secreted and membrane-bound immunoglobulin mu heavy chains is directed by mRNAs that differ at their 3’-ends, Cell 20:293–301.PubMedCrossRefGoogle Scholar
  53. 53.
    Rice, D., and Baltimore, D., 1982, Regulated expression of an immunoglobulin kappa gene introduced into a mouse lymphoid cell line, Proc. Natl. Acad. Sci. USA 79:7862–7865.PubMedCrossRefGoogle Scholar
  54. 54.
    Oi, V., Morrison, S. L., Herzenberg, L. A., and Berg, P., 1983, Immunoglobulin gene expression in transformed cells, Proc. Natl. Acad. Sci. USA 80:825–829.PubMedCrossRefGoogle Scholar
  55. 55.
    Stafford, J., and Queen, C., 1983, Cell-type specific expression of a transfected immunoglobulin gene, Nature 306:77–79.PubMedCrossRefGoogle Scholar
  56. 56.
    Ochi, A., Hawley, R. G., Shulman, M. J., and Hozumi, N., 1983, Transfer of a cloned immunoglobulin light-chain gene to mutant hybridoma cells restores specific antibody production, Nature 302:340–342.PubMedCrossRefGoogle Scholar
  57. 57.
    Ochi, A., Hawley, R. G., Hawley, T., Schulman, M. J., Traunecker, A., Kohler, G., and Hozumi, N., 1983, Functional immunoglobulin production after transfection of cloned immunoglobulin heavy and light chain genes in lymphoid cells, Proc. Natl. Acad. Sci. USA 80:6351–6355.PubMedCrossRefGoogle Scholar
  58. 58.
    Sharon, S., Gefter, M. L., Manser, T., Morrison, S. L., Io, V. T., and Ptashne, M., 1984, Expression of a VHCK chimaeric protein in mouse myeloma cells, Nature 309:364–367.PubMedCrossRefGoogle Scholar
  59. 59.
    Picard, D., and Schaffner, W., 1983, Correct transcription of a cloned mouse immunoglobulin gene in vivo, Proc. Natl. Acad. Sci. USA 80:417–421.CrossRefGoogle Scholar
  60. 60.
    Graham, F. L., and van der Eb, A. J., 1973, A new technique for the assay of infectivity of human adenovirus 5DNA, Virology 52:456–467.PubMedCrossRefGoogle Scholar
  61. 61.
    Chu, G., and Sharp, P. A., 1981, SV40 DNA transfection of cells in suspension: Analysis of the efficiency of transcription and translation of T-antigen, Gene 13:197–202.PubMedCrossRefGoogle Scholar
  62. 62.
    Sandri-Goldin, R. M., Goldin, A. L., Levine, M., and Glorioso, J. C., 1981, High-frequency transfer of cloned herpes simplex virus type 1 sequence to mammalian cells by protoplast fusion, Mol. Cell. Biol. 1:743–752.PubMedGoogle Scholar
  63. 63.
    Morrison, S. L., and Oi, V. T., 1984, Transfer and expression of immunoglobulin genes, Annu. Rev. Immunol. 2:239–256.PubMedCrossRefGoogle Scholar
  64. 64.
    Gluzman, Y., 1982, Eukaryotic Viral Vectors, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  65. 65.
    Boss, M. A., Kenten, J. H., Wood, C. R., and Emtage, J. S., 1984, Assembly of functional antibodies from immunoglobulin heavy and light chains synthesized in E. coli, Nucleic Acids Res. 12:3791–3806.CrossRefGoogle Scholar
  66. 66.
    Wood, C. L., Boss, M. A., Patel, T. P., and Emtage, J. S., 1984, The influence of mRNA secondary structure on expression of an immunoglobulin heavy chain in E. coli, Nucleic Acids Res. 12:3937–3950.CrossRefGoogle Scholar
  67. 67.
    Costantini, F., and Lacy, E., 1981, Introduction of rabbit beta-globin into the mouse germ line, Nature 294:92–94.PubMedCrossRefGoogle Scholar
  68. 68.
    Brinster, R. L., Chen, H. Y., Trumbauer, M., Senear, A. W., Warren, R., and Palmiter, R. D., 1981, Somatic expression of Herpes thymidine kinase in mice following injection of a fusion gene into eggs, Cell 27:223–231.PubMedCrossRefGoogle Scholar
  69. 69.
    Brinster, R. L., Ritchie, K. A., Hammer, R. E., O’Brien, R. L., Arp, B., and Storb, U., 1983, Expression of a microinjected immunoglobulin gene in the spleen of transgenic mice, Nature 306:332–336.PubMedCrossRefGoogle Scholar
  70. 70.
    Storb, U., O’Brien, R. L., McMullen, M. D., Gollahan, K. A., and Brinster, R. L., 1984, High expression of cloned immunoglobulin gene in transgenic mice is restricted to B lymphocytes, Nature 310:238–241.PubMedCrossRefGoogle Scholar
  71. 71.
    Crosschedl, R., Weaver, D., Baltimore, D., and Costantini, F., 1984, Introduction of a (x Ig gene into the mouse germline: Specific expression in lymphoid cells and synthesis of functional antibody, Cell 38:647–658.CrossRefGoogle Scholar
  72. 72.
    Alt, F. W., Enea, V., Bothwell, A. L. M., and Baltimore, D., 1980, Activity of multiple light chain genes in murine myelomas producing a single functional light chain, Cell 21:1–12.PubMedCrossRefGoogle Scholar
  73. 73.
    Ritchie, K. A., Brinster, R. L., and Starb, U., 1984, Allelic exclusion and control of endogenous immunoglobulin gene rearrangement in k transgenic mice, Nature 312:517–520.PubMedCrossRefGoogle Scholar
  74. 74.
    Rusconi, S., and Köhler, G., 1985, Transmission and expression of a specific pair of rearranged immunoglobulin (jl and k genes in a transgenic mouse line, Nature 314:330–334.PubMedCrossRefGoogle Scholar
  75. 75.
    Manison, S. L., Johnson, M. J., Herzenberg, L. A., and Oi, U. T., 1984, Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains, Proc. Natl. Acad. Sci. 81:6851–6855.CrossRefGoogle Scholar
  76. 76.
    Neuberger, M. S., Williams, G. T., and Fox, R. O., 1984, Recombinant antibodies possessing novel effector functions, Nature 312:604–608.PubMedCrossRefGoogle Scholar
  77. 77.
    Boulianne, G. L., Hozumi, N., and Schulman, M. J., 1984, Production of functional chimaeric mouse/human antibody, Nature 312:643–646.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Frederick W. Alt
    • 1
  1. 1.Department of Biochemistry and Institute for Cancer Research, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA

Personalised recommendations