Switching the Isotype of Monoclonal Antibodies

  • Thomas J. Kipps


Isotype switch variant selection is an important adjunct to monoclonal antibody technology. Through the production of hybridomas, we can now harness the specificity of the humoral immune response to generate virtually unlimited amounts of monoclonal antibody of desired specificity. Unfortunately, a selected hybridoma may fail to secrete specific immunoglobulin with an isotype of desired functional activity. This problem may be alleviated through the selection of isotype switch variants that secrete antibody of a different immunoglobulin isotype but with preserved antigen-binding specificity. In addition, by selecting hybridomas that produce monoclonals differing from one another in isotype only, comparative studies can be performed on the functional activities of the different murine immunoglobulin isotypes. Such studies may increase our understanding of potential uses of monoclonal antibodies in cell biology and medicine.


Heavy Chain Immunoglobulin Heavy Chain Heavy Chain Gene Isotype Switch Immunoglobulin Isotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nisonoff, A., Hopper, J. E., and Spring, S. B., 1975, Immunoglobulins of the rabbit, mouse, guinea pig, and horse, in: The Antibody Molecule (F. J. Dixon and H. G. Kunkel, eds.], Academic Press, New York, pp. 313–345.Google Scholar
  2. 2.
    Ey, P. L., Russell-Jones, G. J., and Jenkin, C. R., 1980, Isotypes of mouse IgG-I. Evidence for ‘non-complement-fixing’ IgG1 antibodies and characterization of their capacity to interfere with IgG2 sensitization of target red blood cells for lysis by complement, Mol. Immunol. 17:699–710.PubMedCrossRefGoogle Scholar
  3. 3.
    Parham, P., Kipps, T. J., Ward, F. E., and Herzenberg, L. A., 1983, Isolation of heavy chain class switch variants of a monoclonal anti-DC1 hybridoma cell line: Effective conversion of non-cytotoxic IgGl antibodies to cytotoxic IgG2 antibodies, Hum. Immunol. 8:141–151.PubMedCrossRefGoogle Scholar
  4. 4.
    Ovary, Z., Fahey, J. L., and Barth, W. F., 1965, The immunoglobulins of mice. III. Skin sensitizing activity of mouse immunoglobulins, J. Immunol. 94:410–415.PubMedGoogle Scholar
  5. 5.
    Kipps, T. J., Parham, P., Punt, J., and Herzenberg, L. A., 1985, Importance of isotype in human antibody dependent cell-mediated cytotoxicity directed by murine monoclonal antibodies, J. Exp. Med., 161:1–17.PubMedCrossRefGoogle Scholar
  6. 6.
    Wright, P. W., and Bernstein, I. D., 1980, Serotherapy of malignant disease, Prog. Exp. Tumor Res. 25:140–162.PubMedGoogle Scholar
  7. 7.
    Matthews, T. J., Collins, J. J., Roloson, G., Thiel, H.-J., and Bolognesi, D. P., 1981, Immunologic control of the ascites form of murine adenocarcinoma 755. IV. Characterization of the protective antibody in hyperimmune serum, J. Immunol. 126:2332–2336.PubMedGoogle Scholar
  8. 8.
    Langlois, A. J., Matthews, T., Roloson, G. J., Thiel, H.-J., Collins, J. J., and Bolognesis, D. P., 1980, Immunologic control of the ascites form of murine adenocarcinoma 755. V. Antibody-directed macrophages mediate tumor cell destruction, J. Immunol. 126:2337–2340.Google Scholar
  9. 9.
    Herlyn, D., and Koprowski, H., 1982, IgG2a monoclonal antibodies inhibit human tumor growth through interaction with effector cells, Proc. Natl Acad. Sci. USA 79:4761–4765.PubMedCrossRefGoogle Scholar
  10. 10.
    Honjo, T., and Kataoka, T., 1978, Organization of immunoglobulin heavy chain genes and allelic deletion model, Proc. Natl. Acad. Sci. USA 75:2140–2145.PubMedCrossRefGoogle Scholar
  11. 11.
    Adams, J. M., Kemp, D. J., Bernard, O., Gough, N., Webb, E., Tyler, B., Gerondakis, S., and Cory, S., 1981, Organization and expression of murine immunoglobulin genes, Immunol. Rev. 59:5–32.PubMedCrossRefGoogle Scholar
  12. 12.
    Shimizu, A., Takahasi, N., Yaoita, Y., and Honjo, T., 1982, Organization of the constant region gene family of mouse immunoglobulin heavy chain, Cell 28:499–506.PubMedCrossRefGoogle Scholar
  13. 13.
    Davis, M., Calame, K., Early, P., Livant, D., Joho, R., Weissman, I., and Hood, L., 1980, An immunologlobulin heavy chain gene is formed by at least two recombination events, Nature 283:733–739.PubMedCrossRefGoogle Scholar
  14. 14.
    Early, P., Rogers, J., Davis, M., Calame, K., and Hood, L., 1980, An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D and JH, Cell 19:981–992.PubMedCrossRefGoogle Scholar
  15. 15.
    Wall, R., Choi, E., Kuehl, M., and Rodgers, J., 1981, RNA processing in immunoglobulin gene expression, Cold Spring Harbor Symp. Quant. Biol. 45:879–885.PubMedCrossRefGoogle Scholar
  16. 16.
    Yaoita, Y., Kumagai, Y., Okumura, K., and Honjo, T., 1982, Expression of lymphocyte surface IgE does not require switch recombination, Nature 297:697–699.PubMedCrossRefGoogle Scholar
  17. 17.
    Early, P., Rogers, J., Davis, M., Calame, K., Bond, M., Wall, R., and Hood, L., 1980, Two mRNAs produced from a single immunoglobulin mu gene by alternative RNA processing pathways, Cell 20:313–319.PubMedCrossRefGoogle Scholar
  18. 18.
    Maki, R., Roeder, W., Traunecker, A., Sidman, C., Wabl, M., Raschke, W., and Tonegawa, S., 1981, The role of DNA rearrangement and alternative RNA processing in the expression of immunoglobulin delta genes, Cell 24:353–365.PubMedCrossRefGoogle Scholar
  19. 19.
    Moore, K. W., Rogers, J., Hunkapiller, T., Early, P., Nottenburg, C., Weissman, I., Bazin, H., Wall, R., and Hood, L., 1981, Expression of IgD may use both DNA rearrangement and RNA splicing mechanisms, Proc. Natl. Acad. Sci. USA 78:1800–1804.PubMedCrossRefGoogle Scholar
  20. 20.
    Kataoka, T., Kawakam, T., Takahashi, N., and Honjo, T., 1980, Rearrangement of immunoglobulin gamma-1-chain gene and mechanism for heavy-chain class switch, Proc. Natl. Acad. Sci. USA 77:919–923.PubMedCrossRefGoogle Scholar
  21. 21.
    Dunnick, W., Rabbitts, T. H., and Milstein, C., 1980, An immunoglobulin deletion mutant with implications for the heavy-chain switch and RNA splicing, Nature 286:669–675.PubMedCrossRefGoogle Scholar
  22. 22.
    Sakano, H., Maki, R., Kurusawa, Y., Roeder, W., and Tonegawa, S., 1980, Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes, Nature 286:676–679.PubMedCrossRefGoogle Scholar
  23. 23.
    Honjo, T., Nakai, S., Nishida, Y., Kataoka, T., Yamawaki-Kataoka, Y., Takahashi, N., Obata, M., Shimizu, A., Yaoita, Y., Nikaido, T., and Ishida, N., 1981, Rearrangements of immunoglobulin genes during differentiation and evolution, Immunol. Rev. 59:33–68.PubMedCrossRefGoogle Scholar
  24. 24.
    Cory, S., Webb, E., Gough, J., and Adams, J., 1981, Recombination events near the immunoglobulin C-mu gene join variable and constant region genes, switch heavy chain expression, or inactivate the locus, Biochemistry 20:2662–2671.PubMedCrossRefGoogle Scholar
  25. 25.
    Cory, S., and Adams, J. M., 1980, Deletions are associated with somatic rearrangement of immunoglobulin heavy chain genes, Cell 19:37–43.PubMedCrossRefGoogle Scholar
  26. 26.
    Coleclough, C., Cooper, D., and Perry, R. P., 1980, Rearrangement of immunoglobulin heavy chain during B lymphocyte development as revealed by studies of mouse plasmacytoma cells, Proc. Natl. Acad. Sci. USA 77:1422–1426.PubMedCrossRefGoogle Scholar
  27. 27.
    Kataoka, T., Miyata, T., and Honjo, T., 1981, Repetitive sequences in class-switch recombination regions of immunoglobulin heavy chain genes, Cell 23:357–368.PubMedCrossRefGoogle Scholar
  28. 28.
    Hurwitz, J. L., Coleclough, C., and Cebra, J. J., 1980, CH gene rearrangements in IgM-bearing B cells and in the normal splenic DNA component of hybridomas making different isotypes of antibody, Cell 22:349–359.PubMedCrossRefGoogle Scholar
  29. 29.
    Sablitzky, F., Radbruch, A., and Rajewsky, K., 1982, Spontaneous immunoglobulin class switching in myeloma and hybridoma cell lines differs from physiological class switching, Immunol. Rev. 67:59–72.PubMedCrossRefGoogle Scholar
  30. 30.
    Kipps, T. J., and Herzenberg, L. A., 1984, Allotype switch variants: Demonstration of inter-chromosomal recombination in isotype switch of cultured monoclonal antibody-producing hybridomas, In preparation.Google Scholar
  31. 31.
    Radbruch, A., Liesegang, B., and Rajewsky, K., 1980, Isolation of variants of mouse myeloma X63 that express changed immunoglobulin class, Proc. Natl. Acad. Sci. USA 77:2909–2913.PubMedCrossRefGoogle Scholar
  32. 32.
    Dangl, J. L., Parks, D. R., Oi, V. T., and Herzenberg, L. A., 1982, Rapid isolation of cloned isotype switch variants using fluorescence activated cell sorting, Cytometry 2:395–401.PubMedCrossRefGoogle Scholar
  33. 33.
    Lang, R. B., Stanton, L. W., and Marcu, K. B., 1982, On immunoglobulin heavy chain switching: Two gamma 2b genes are rearranged via switch sequences in MPC-11 cells but only one is expressed, Nucleic Acids Res. 10(2):611–630.PubMedCrossRefGoogle Scholar
  34. 34.
    Cory, S., Adams, J. M., and Kemp, D. J., 1980, Somatic rearrangements forming active immunoglobulin mu genes in B and T lymphoid cell lines, Proc. Natl. Acad. Sci. USA 77(8):4943–4947.PubMedCrossRefGoogle Scholar
  35. 35.
    Preud’homme, J. L., Birshtein, B. K., and Scharff, M. D., 1975, Variants of a mouse myeloma cell line that synthesize immunoglobulin heavy chains having an altered serotype, Proc. Natl. Acad. Sci. USA 72:1427–1430.PubMedCrossRefGoogle Scholar
  36. 36.
    Francus, T., Dharmgrongartama, B., Campbell, R., Scharff, M. D., and Birshtein, B. K., 1978, IgG2a—producing variants of an IgG2b-producing mouse myeloma cell line, J. Exp. Med. 147:1535–1550.PubMedCrossRefGoogle Scholar
  37. 37.
    Francus, T., and Birshtein, B. K., 1978, An IgG2a-producing variant of an IgG2b-producing mouse myeloma cell line. Structural studies on the Fc region of parent and variant heavy chains, Riochemistry 17(20):4324–4331.CrossRefGoogle Scholar
  38. 38.
    Eckhardt, L. A., Tilley, S. A., Lang, R. B., Marcu, K. B., and Birshtein, B. K., 1982, DNA rearrangements in MPC-11 immunoglobulin heavy chain class-switch variants, Proc. Natl. Acad. Sci. USA 79:3006–3010.PubMedCrossRefGoogle Scholar
  39. 39.
    Liesegang, B., Radbruch, A., and Rajewsky, K., 1978, Isolation of myeloma variants with predefined variant surface immunoglobulin by cell sorting, Proc. Natl. Acad. Sci. USA 75:3901–3905.PubMedCrossRefGoogle Scholar
  40. 40.
    Neuberger, M. S., and Rajewsky, K., 1981, Switch from hapten-specific immunoglobulin M to immunoglobulin D secretion in a hybrid mouse cell line, Proc. Natl.Acad. Sci. USA 78:1138–1142.CrossRefGoogle Scholar
  41. 41.
    Baumhackel, H., Liesegang, B., Radbruch, B., Rajewsky, K., and Sablitzky, F., 1982, Switch from NIP specific IgG3 to IgGl in the mouse hybridoma cell line S24/63/63, J. Immunol. 128:1217–1220.PubMedGoogle Scholar
  42. 42.
    Muller, C. E., and Rajewsky, K., 1983, Isolation of immunoglobulin class switch variants from hybridoma lines secreting anti-idiotope antibodies by sequential sublining, J. Immunol. 131:877–881.PubMedGoogle Scholar
  43. 43.
    Thammana, P., and Scharff, M. D., 1983, Immunoglobulin heavy chain class switch from IgM to IgG in hybridoma, Eur. J. Immunol. 13:614–619.PubMedCrossRefGoogle Scholar
  44. 44.
    Coffino, P., and Scharff, M. D., 1971, Rate of somatic mutation in immunoglobulin production by mouse myeloma cells, Proc. Natl. Acad. Sci. USA 68:219–223.PubMedCrossRefGoogle Scholar
  45. 45.
    Köhler, G., and Shulman, M. J., 1980, Immunoglobulin M mutants, Eur. J. Immunol. 10:467–476.CrossRefGoogle Scholar
  46. 46.
    Parks, D. R., and Herzenberg, L. A., 1984, Fluorescence activated cell sorting: Theory, experimental optimization and application in lymphoid cell biology, Meth. Enzymol. 108:197–241.PubMedCrossRefGoogle Scholar
  47. 47.
    Kipps, T. J., and Herzenberg, L. A., 1984, The fluorescence activated cell sorter: Complementary tools in immunodiagnosis and immunotherapy, in: Rapid Methods in Immunology and Microbiology, Springer-Verlag, Berlin, In press.Google Scholar
  48. 48.
    Huang, C., Parsons, M., Oi, V. T., Huang, H. S., and Herzenberg, L. A., 1983, Genetic characterization of mouse immunoglobulin allotypic determinants (allotypes) defined by monoclonal antibodies, Immunogenetics 18:311–321.PubMedCrossRefGoogle Scholar
  49. 49.
    Parsons, M., Oi, V. T., Huang, C. M., and Herzenberg, L. A., 1983, Structural characterization of mouse immunoglobulin allotypic determinants (allotypes) defined by monoclonal antibodies, Immunogenetics 18:323–334.PubMedCrossRefGoogle Scholar
  50. 50.
    Oi, V. T., and Herzenberg, L. A., 1979, Localization of murine Ig-1b and Ig-1a (IgG2a) allotypic determinants defined with monoclonal antibodies, Mol. Immunol. 16:1005–1018.PubMedCrossRefGoogle Scholar
  51. 51.
    Dangl, J. L., and Herzenberg, L. A., 1982, Selection of hybridomas and hybridoma variants using the fluorescence activated cell sorter, J. Immunol. Meth. 52:1–14.CrossRefGoogle Scholar
  52. 52.
    Goding, J. W., 1976, Conjugation of antibodies with fluorochromes: Modification of the standard methods, J. Immunol. Meth. 13:215–236.CrossRefGoogle Scholar
  53. 53.
    Oi, V. T., Glazer, A. N., and Stryer, L., 1982, Fluorescent phycobiliprotein conjugates for analysis of cells and molecules, J. Cell Biol. 93:981–986.PubMedCrossRefGoogle Scholar
  54. 54.
    Hardy, R. R., 1984, Purification and coupling of fluorescent proteins for use in flow cytometry, in: Handbook of Experimental Immunology, 4th ed. (D. M. Weir, C. C. Blackwell, L. A. Herzenberg, and L. A. Herzenberg, eds.), Blackwell, Edinburgh, In press.Google Scholar
  55. 55.
    Luria, S. E., and Delbrück, M., 1943, Mutation of bacteria from virus sensitivity to virus resistance, Genetics 28:491–511.PubMedGoogle Scholar
  56. 56.
    Catcheside, D. G., 1949, Spivn in: The Genetics of Micro-organisms, Pitman, London, pp. 158–162.Google Scholar
  57. 57.
    Birshtein, B. K., Preud’homme, J.-L., and Scharff, M. D., 1974, Variants of mouse myeloma cells that produce short immunoglobulin heavy chains, Proc. Natl. Acad. Sci. USA 71:3478–3482.PubMedCrossRefGoogle Scholar
  58. 58.
    Rosen, A., and Klein, G., 1983, UV light-induced immunoglobulin heavy-chain class switch in a human lymphoblastoid cell line, Nature 306:189–190.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Thomas J. Kipps
    • 1
  1. 1.Department of GeneticsStanford University School of MedicineStanfordUSA

Personalised recommendations