The Generation of Better Monoclonal Antibodies through Somatic Mutation

  • Gad Spira
  • Antonio Bargellesi
  • Roberta R. Pollock
  • Hector L. Aguila
  • Matthew D. Scharff


Hybridoma technology1 and the monoclonal antibodies it provides have made it possible to apply serology to many new basic and clinical problems. Among the many benefits of hybridoma technology are the potential of obtaining pure antibodies from impure immunogens, the chemical homogeneity of monoclonal antibodies, making them reliable reagents, the large amounts of antibody that can be generated, and the ability to renew exactly the same antibody whenever it is needed.


Somatic Mutation Antigen Binding Single Amino Acid Substitution Switch Variant Mouse Myeloma Cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity,Nature 256:495–497.PubMedCrossRefGoogle Scholar
  2. 2.
    Parham, P., Kipps, T. J., Ward, F. E., and Herzenberg, L. A., 1983, Isolation of heavy chain class switch variants of a monoclonal anti-DCl hybridoma cell line: Effective conversion of noncytotoxic IgGl antibodies to cytotoxic IgG2 antibodies, Hum. Immunol. 8:141–151.PubMedCrossRefGoogle Scholar
  3. 3.
    Grey, H. M, Hirst, J. W., and Cohn, M., 1971, A new mouse immunoglobulin: IgG3, J. Exp. Med. 133:289–304.PubMedCrossRefGoogle Scholar
  4. 4.
    Teillaud, J. L., Desaymard, C., Giusti, A. M., Haseltine, B., Pollock, R. R., Yelton, D. E., Zack, D. J., and Scharff, M. D., 1983, Monoclonal antibodies reveal the structural basis of antibody diversity, Science 222:721–726.PubMedCrossRefGoogle Scholar
  5. 5.
    Morrison, S. L., and Scharff, M. D., 1981, Mutational events in mouse myeloma, CRC Crit. Rev. Immunol. 3:1–22.Google Scholar
  6. 6.
    Coffino, P. R., Baumal, R., Laskov, R., and Scharff, M. D., 1972, Cloning of mouse myeloma cells and detection of rare variants, J. Cell. Physiol. 79:429–439.PubMedCrossRefGoogle Scholar
  7. 7.
    Cebra, J. J., Komisar, J. L., and Switzer, P. A., 1984, Ch isotype “switching” during normal B-lymphocytic development, Annu. Rev. Immunol. 2:493–548.PubMedCrossRefGoogle Scholar
  8. 8.
    Preud’homme, J.-L., Birshtein, B. K., and Scharff, M. D., 1975, Variants of a mouse myeloma cell line which synthesize immunoglobulin heavy chains having an altered serotype, Proc. Natl. Acad. Sci. USA 72:1427–1430.PubMedCrossRefGoogle Scholar
  9. 9.
    Liesegang, B., Radbruch, A., and Rajewsky, K., 1978, Isolation of myeloma variants with predefined variant surface immunoglobulin by cell sorting, Proc. Natl. Acad. Sci. USA 75:3901–3905.PubMedCrossRefGoogle Scholar
  10. 10.
    Dangl, J. L., and Herzenberg, L. A., 1982, Selection of hybridoma variants using the fluorescence activated cell sorter, J. Immunol. Meth. 52:1–14.CrossRefGoogle Scholar
  11. 11.
    Radbruch, A., Liesegang, B., and Rajewsky, K., 1980, Isolation of variants of mouse myeloma X63 that express changed immunoglobulin class. Proc. Natl. Acad. Sci. USA 77:2909–2913.PubMedCrossRefGoogle Scholar
  12. 12.
    Eckhardt, L. A., Tilley, S. A., Lang, R. B., Marcu, K. B., and Birshtein, B. K., 1983, DNA rearrangements in MPC-11 immunoglobulin heavy chain class switch variants, Proc. Natl. Acad. Sci. USA 79:3006–3010.CrossRefGoogle Scholar
  13. 13.
    Sablitzky, F., Radbruch, A., and Rajewsky, K., 1982, Spontaneous immunoglobulin class switching in myeloma and hybridoma cell lines differs from physiological class switching, Immunol. Rev. 67:59–72.PubMedCrossRefGoogle Scholar
  14. 14.
    Shimizu, A., and Honjo, T., 1984, Immunoglobulin class switching, Cell 36:801–803.PubMedCrossRefGoogle Scholar
  15. 15.
    Tilley, S. A., Eckhardt, L. A., Marcu, K. B., and Birshtein, B. K., 1983, Hybrid γ2b- γ2a genes expressed in myeloma variants: Evidence for homologous recombination, Proc. Natl. Acad. Sci. USA 80:6967–6971.PubMedCrossRefGoogle Scholar
  16. 16.
    Muller, C. E., and Rajewsky, K., 1983, Isolation of immunoglobulin class switch variants from hybridoma lines secreting anti-idiotope antibodies by sequential sublining, J. Immunol. 131:877–881.PubMedGoogle Scholar
  17. 17.
    Cavalli-Sforza, L. L. and Lederberg, J., 1956, Isolation of pre-adaptive mutants in bacteria by sib selection, Genetics 41:367–381.PubMedGoogle Scholar
  18. 18.
    Spira, G., Bargellesi, A., Teillaud, J.-L., and Scharff, M. D., 1984, The identification of monoclonal class switch variants by sib selection and an ELISA assay, J. Immunol. Meth. 74:307–315.CrossRefGoogle Scholar
  19. 19.
    Zack, D. J., and Scharff, M. D., 1984, The identification of somatic mutations in immunoglobulin expression and structure, in: Single-Cell Mutation Monitoring Systems (A. A. Aversari and F. J. deSerres, eds.), Plenum Press, New York, pp. 233–263.CrossRefGoogle Scholar
  20. 20.
    Bargellesi, A., Spira, G., and Scharff, M. D., 1984, Loss of cryoprecipitability in anti-human T-cell monoclonal by subclass switching, Submitted for publication.Google Scholar
  21. 21.
    Staplewski, Z., Spira, G., and Scharff, M. D., Manuscript in preparation.Google Scholar
  22. 22.
    Müller, C. E., and Rajewsky, K., 1984, Idiotope regulation by isotype switch variants of two monoclonal anti-idiotope antibodies, J. Exp. Med. 159:758–772.PubMedCrossRefGoogle Scholar
  23. 23.
    Corte, G., Mingari, M. C., Moretta, A., Damiani, G., Moretta, L., and Bargellesi, A., 1982, Human T cell subpopulation defined by monoclonal antibody: I) A small subset is responsible for proliferation to allogeneic cells to soluble antigens and for helper B cell differentiation, J. Immunol. 128:16–20.PubMedGoogle Scholar
  24. 24.
    Yelton, D. E., and Scharff, M. D., 1982, Mutant monoclonal antibodies with alterations in biological functions, J. Exp. Med. 156:1131–1148.PubMedCrossRefGoogle Scholar
  25. 25.
    Kenter, A. L., and Birshtein, B. K., 1979, Genetic mechanism accounting for precise immunoglobulin domain deletion in a variant of MPC-11 myeloma cells, Science 206:1307–1309.PubMedCrossRefGoogle Scholar
  26. 26.
    Teillaud, J.-L., Diamond, B., Pollock, R. R., Fajtova, V., and Scharff, M. D., 1984, Fc receptors on cultural myeloma and hybridoma cells, J. Immun. (in press).Google Scholar
  27. 27.
    Spiegelberg, H. L. and Fishkin, B. G., 1972, The metabolism of human γG immunoglobulins of different heavy chain subclass. III. The metabolism of heavy chain disease proteins and of Fc fragment of myeloma proteins, Clin. Exp. Immunol. 10:599–607.PubMedGoogle Scholar
  28. 28.
    Yasmeen, D., Ellerson, J. R., Dorrington, K. J., and Painter, R. H., 1976, The structure and function of immunoglobulin domains. IV. The distribution of some effector functions among the Cγ2 and Cγ3 homology region of human immunoglobulin, J. Immunol. 116:518–526.PubMedGoogle Scholar
  29. 29.
    Pollock, R. R., Metlay, J. P., Birshtein, B. K., and Scharff, M. D., 1984, Intravascular metabolism of normal and mutant monoclonal antibodies, Fed. Proc. 43:1682 (abst.).Google Scholar
  30. 30.
    Rodwell, J. D., Gerhart, P. J., and Karush, F., 1983, Restriction in IgM expression. IV. Affinity analysis of monoclonal anti-phosphorylcholine antibodies, J. Immunol. 130:313–322.PubMedGoogle Scholar
  31. 31.
    Rothstein, T. L., and Gefter, M., 1983, Affinity analysis of idiotype positive and idiotype-negative-ars-binding hybridoma proteins and ars-immune sera, Mol. Immunol. 20:161–168.PubMedCrossRefGoogle Scholar
  32. 32.
    Dildrop, R., Bruggeman, M., Radbruch, A., Rajewsky, K., and Beyrenther, K., 1982, Immunoglobulin V region variants in hybridoma cells. II. Recombination between V genes, EMBO J. 1:635–640.PubMedGoogle Scholar
  33. 33.
    Kohler, H., 1975, The response to phosphorylcholine: Dissecting an immune response, Transplant Rev. 27:24–56.PubMedGoogle Scholar
  34. 34.
    Cook, W. D., and Scharff, M. D., 1977, Antigen-binding mutants of mouse myeloma cells, Proc. Natl. Acad. Sci. USA 74:5687–5691.PubMedCrossRefGoogle Scholar
  35. 35.
    Cook, W. D., Rudikoff, S., Giusti, A. M., and Scharff, M. D., 1982. Somatic mutation in a cultured mouse myeloma cell affects antigen binding, Proc. Natl. Acad. Sci. USA 79:1240–1244.PubMedCrossRefGoogle Scholar
  36. 36.
    Rudikoff, S., Giusti, A. M., Cook, W. D., and Scharff, M. D., 1982, Single amino acid substitution altering antigen-binding specificity, Proc. Natl. Acad. Sci. USA 79:1979–1983.PubMedCrossRefGoogle Scholar
  37. 37.
    Davies, D. R., and Metzger, H., 1983, Structure basis of antibody function, Annu. Rev. Immunol. 1:87–117.PubMedCrossRefGoogle Scholar
  38. 38.
    Gerhart, P. J., Johnson, J. D., Douglas, R., and Hood, L., 1981, IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts,Nature 291:39–44.CrossRefGoogle Scholar
  39. 39.
    Crews, S., Griffin, J., Huang, H., Calame, K., and Hood, L., 1981, A single VH gene segment encodes the immune response to phosphorylcholine: Somatic mutation is correlated with the class of the antibody, Cell 25:59–66.PubMedCrossRefGoogle Scholar
  40. 40.
    Diamond, B., and Scharff, M. D., 1984, Somatic mutation of the T15 heavy chain gives rise to an antibody with autoantibody specificity, Proc. Natl. Acad. Sci. USA 81:5841–5844.PubMedCrossRefGoogle Scholar
  41. 41.
    Zack, D., Rudikoff, S., Giusti, A. M., and Scharff, M. D., Revertants of antigen binding mutants of S107, Manuscript in preparation.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Gad Spira
    • 1
  • Antonio Bargellesi
    • 2
  • Roberta R. Pollock
    • 3
  • Hector L. Aguila
    • 3
  • Matthew D. Scharff
    • 3
  1. 1.Faculty of MedicineTechnionHaifaIsrael
  2. 2.Department of Biological ChemistryUniversity of GenoaItaly
  3. 3.Department of Cell BiologyAlbert Einstein College of MedicineNew YorkUSA

Personalised recommendations