The Use of Mouse Lymphocyte Clones to Define T-Cell Gene Products and Analyze Lymphocyte Gene Activation

  • Gary J. Nabel


Several systems have facilitated the study of gene activation in eukaryotic cells. Because they have been so well-characterized, mouse T lymphocytes have proven particularly useful for these studies. Many of the molecules expressed on the surface membranes of thymic-dependent lineages have been defined using monoclonal antibodies, biochemical purification, or identification of the genes encoding them.1–5 This differentiation process has been characterized using gene products on cell surfaces to define the cellular stages of T-cell development.6–9 More recently, the molecules that mediate biological functions of T cells have also become established. These include lymphokines, cell surface molecules involved in the recognition of antigen, and cell surface glycoproteins expressed during activation. The technology of T-cell cloning has facilitated the definition of these molecules. T-cell clones promise further to allow insight into the steps that lead to activation. This chapter will review several aspects of mouse T-cell clones. No attempt will be made to review completely the many contributions to this field. Attention will be devoted to the following topics: (1) What T cell clones can be grown in vitro and what are their properties? (2) What essential factors allow continuous propagation of T-cell clones? (3) How can these be used to understand gene activation in eukaryotic cells?


Conditioned Medium Cell Surface Glycoprotein Mast Cell Growth Factor Clone Mast Cell Human Inducer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boyse, E. A., and Old, L. J., 1975, The immunogenetics of differentiation in the mouse, Harvey Lectures 71:23–53.Google Scholar
  2. 2.
    McKenzie, I. F. C., and Potter, T., 1979, Murine lymphocyte surface antigens, Adv. Immunol. 27:179–338.PubMedCrossRefGoogle Scholar
  3. 3.
    Ledbetter, J., and Herzenberg, L. A., 1979, Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens, Immunol. Rev. 47:63–89.PubMedCrossRefGoogle Scholar
  4. 4.
    Springer, T. A., Davignon, D., Ho, M. K., Kurzinger, K., Martz, E., and Sanchez-Madrid, F., 1982, LFA-1 and Lyt-2,3 molecules associated with T lymphocyte-mediated killing; and Mac-1, an LFA-1 homologue associated with complement receptor function, Immunol. Rev. 68:171–195.PubMedCrossRefGoogle Scholar
  5. 5.
    Boyse, E. A., Stockert, E., and Old, L.J., 1969, Properties of four antigens specified by the Tla locus. Similarities and differences, in: International Convocation on Immunology (N. R. Rose and F. Milgrom), eds. S. Karger, New York, pp. 353–357.Google Scholar
  6. 6.
    Cantor, H., and Boyse, E. A., 1975, Functional subclasses of T lymphocytes bearing different Ly antigens. I. The generation of functionally distinct T cell subclasses is a differentiative process independent of antigen, J. Exp. Med. 141:1376–1389.PubMedCrossRefGoogle Scholar
  7. 7.
    Cantor, H., and Boyse, E. A., 1975, Functional subclasses of T lymphocytes bearing different Ly antigens. II. Cooperation between subclasses of Ly+ cells in the generation of killer activity, J. Exp. Med. 141:1390–1399.PubMedCrossRefGoogle Scholar
  8. 8.
    Cantor, H., and Weissman, I., 1976, Development and function of subpopulations of thymocytes and T-lymphocytes, Prog. Allergy 20:1.PubMedCrossRefGoogle Scholar
  9. 9.
    Cantor, H., and Boyse, E. A., 1977, Lymphocytes as models for the study of mammalian cellular differentiation, Immunol. Rev. 33:105–124.PubMedCrossRefGoogle Scholar
  10. 10.
    El-Arini, M. O., and Osoba, D., 1973, Differentiation of thymus-derived cells from precursors in mouse bone marrow, J. Exp. Med. 137:821–837.PubMedCrossRefGoogle Scholar
  11. 11.
    Komuro, K., Itakura, K., Boyse, E. A., and John, M., 1975, Ly 5: A new T-lymphocyte antigen system, Immunogenetics 1:452–456.CrossRefGoogle Scholar
  12. 12.
    Fibach, E., Gerassi, E., and Sachs, L., 1976, Induction of colony formation in vitro by human lymphocytes, Nature 259:127–129.PubMedCrossRefGoogle Scholar
  13. 13.
    Morgan, D. A., Ruscetti, F. W., and Gallo, R., 1976, Selective in vitro growth of T-lymphocytes from normal human bone marrows, Science 193:1007–1008.PubMedCrossRefGoogle Scholar
  14. 14.
    Gillis, S., and Smith, K. A., 1977, Long-term culture of tumour-specific cytotoxic T-cells, Nature 268:154–156.PubMedCrossRefGoogle Scholar
  15. 15.
    Quintans, J., and Lefkowits, I., 1973, Precursor cells specific to sheep red cells in nude mice. Estimation of frequency in the micro-culture system, Eur. J. Immunol. 3:392–397.PubMedCrossRefGoogle Scholar
  16. 16.
    Finn, O., Boniver, J., and Kaplan, H. S., 1979, Induction, establishment in vitro, and characterization of functional, antigen-specific, carrier-primed murine T-cell lymphomas, Proc. Natl. Acad. Sci. USA 76:4033–4037.PubMedCrossRefGoogle Scholar
  17. 17.
    Kappler, J. W., Skidmore, B., White, J., and Marrack, P., 1981, Antigen inducible, H-2 restricted, interleukin-2-producing T cell hybridomas. Lack of independent antigen and H-2 recognition, J. Exp. Med. 153:1198–1214.PubMedCrossRefGoogle Scholar
  18. 18.
    Nabel, G., Fresno, M., Chessman, A., and Cantor, H., 1981, Use of cloned populations of mouse lymphocytes to analyze cellular differentiation, Cell 23:19–28.PubMedCrossRefGoogle Scholar
  19. 19.
    Nabel, G., Greenberger, J. S., Sakakeeny, M. A., and Cantor, H., 1981, Multiple biologic activities of a cloned inducer T cell population, Proc. Natl. Acad. Sci. USA 78:1157–1161.PubMedCrossRefGoogle Scholar
  20. 20.
    Nabel, G., Galli, S. J., Dvorak, A. M., Dvorak, H. F., and Cantor, H., 1981, Inducer T lymphocytes synthesize a factor that stimulates proliferation of cloned mast cells, Nature 291:332–334.PubMedCrossRefGoogle Scholar
  21. 21.
    Nathan, D. G., Chess, L., Hillman, D. G., Clarke, B., Breard, J., Mesler, D. E., and Housman, D. E., 1978, Human erythroid burst-forming unit; T-cell requirement for proliferation in vitro, J. Exp. Med. 147:324–339.PubMedCrossRefGoogle Scholar
  22. 22.
    Yokota, T., Lee, F., Rennick, D., Hall, C., Arai, N., Mosmann, T., Nabel, G., Cantor, H., and Arai, K., 1984, Isolation and characterization of a mouse cDNA clone that expresses mast cell growth factor activity in monkey cells, Proc. Natl. Acad. Sci. USA 81:1070–1074.PubMedCrossRefGoogle Scholar
  23. 23.
    Rennick, D. M., Lee, F. D., Yokota, T., Arai, K., Cantor, H., and Nabel, G. J., 1985, A cloned MCGF cDNA encodes a multilineage hematopoietic growth factor: multiple activities of interleukin-3, J. Immunol. 134:910–914.PubMedGoogle Scholar
  24. 24.
    Ihle, J., Keller, J., Henderson, L., Frederick, K., and Palaszynski, E., 1982, Procedures for the purification of interleukin-3 to homogeneity, J. Immunol. 129:2431–2436.PubMedGoogle Scholar
  25. 25.
    Fung, M. C., Hapel, A. J., Ymer, S., Cohen, D. R., Johnson, R. M., Campbell, H. D., and Young, I. G., 1984, Molecular cloning of cDNA for murine interleukin-3, Nature 307:233–237.PubMedCrossRefGoogle Scholar
  26. 26.
    Watson, J. D., 1979, Continuous proliferation of murine antigen-specific helper T-lymphocytes in culture, J. Exp. Med. 150:1510–1519.PubMedCrossRefGoogle Scholar
  27. 27.
    Sredni, B., Tse, H. Y., and Schwartz, R. H., 1980, Direct cloning and extended culture of antigen-specific MHC-restricted, proliferating T-lymphocytes, Nature 283:581–583.PubMedCrossRefGoogle Scholar
  28. 28.
    Fathman, C. G., and Kimoto, M., 1980, Studies utilizing murine T cell clones. Ir genes, Ia antigens and MLR stimulating determinants, Immunol. Rev. 54:55–80.Google Scholar
  29. 29.
    Glasebrook, A. L., Sarmiento, M., Loken, M. R., Dialynas, D. P., Quintans, J., Eisenberg, L., Lutz, C. T., Wild, D., and Fitch, F. W., 1981, Murine T lymphocyte clones with distinct immunologic functions, Immunol. Rev. 54:225–266.PubMedCrossRefGoogle Scholar
  30. 30.
    Von Boehmer, H., and Haas, W., 1981, H-2 restricted cytolytic and non-cytolytic T cell clones: Isolation, specificity and functional analysis, Immunol. Rev. 54:27–56.CrossRefGoogle Scholar
  31. 31.
    Nabholz, M., Conzelmann, A., Acusto, O., North, M., Haas, W., Pohlit, W., von Boehmer, H., Hengartner, H., Mach, J.-P., Engers, H., and Johnson, J. P., 1980, Established murine cytolitic T-cell lines as tools for a somatic cell genetic analysis of T-cell functions, Immunol. Rev. 51:125–156.PubMedCrossRefGoogle Scholar
  32. 32.
    Gillis, S., Fern, M., Oi, W., and Smith, K., 1978, T Cell growth factor; Parameters of production and quantitative microassay for activity, J. Immunol. 120:2027–2032.PubMedGoogle Scholar
  33. 33.
    Watson, J., Gillis, S., Marbrook, J., Mochizuki, D., and Smith, K. A., 1979, Biochemical and biological characterization of lymphocyte regulatory molecules. I. Purification of a class of murine lymphokines, J. Exp. Med. 150:849–861.PubMedCrossRefGoogle Scholar
  34. 34.
    Hayflick, L., 1973, Screening cultures for mycoplasma infections, in Tissue Culture, Methods and Applications (P. Kruse and M. Patterson, eds.), Academic Press, New York, pp. 722–728.Google Scholar
  35. 35.
    Lionetti, F. J., Hunt, S. M., Mattaliano, R. J., and Valeri, C. R., 1978, in vitro studies of cryopreserved baboon granulocytes, Transfusion 18:685–692.Google Scholar
  36. 36.
    Ihle, J. W., Keller, J., Oroszlan, S., Henderson, L., Copeland, T. D., Fitch, F., Prystowsky, M. B., Goldwasser, E., Schrader, J. W., Palaszynski, Dy. M., and Lebel, B., 1983, Biological properties of homogeneous interleukin-3. I. Demonstration of WEHI-3 growth factor activity, mast cell growth factor activity, colony-stimulating factor activity and histamine-producing cell-stimulating factor activity, J. Immunol. 131:282–287.PubMedGoogle Scholar
  37. 37.
    Schrader, J. W., Clark-Lewis, I., Crapper, R. M., and Wong, G. W., 1983, P-Cell stimulating factor: Characterization, action on multiple lineages of bone-marrow-derived cells and role in oncogenesis, Immunol. Rev. 76:79–104.PubMedCrossRefGoogle Scholar
  38. 38.
    Smith, K. A., 1981, T-cell growth factor: present status and future implications, in: Lymphokines, Volume 2 (E. Pick, ed.), Academic Press, New York, pp. 21–30.Google Scholar
  39. 39.
    Rubin, Y., and Gupta, S. L., 1980, Differential efficacies of human type I and type II interferons as antiviral and antiproliferative agents, Proc. Natl. Acad. Sci. USA 77:5928–5937.PubMedCrossRefGoogle Scholar
  40. 40.
    Hovanessian, A. G., La Bonnardiere, C., and Falcoff, E., 1980, Action of murine gamma (immune) interferon on beta (fibroblast)-interferon resistant L 1210 and embryonal carcinoma cells, J. Interferon Res. 1:125–135.PubMedCrossRefGoogle Scholar
  41. 41.
    Epstein, L. B., Weil, J., Lucas, D. O., Cox, D. R., and Epstein, C. J., 1981, The biology and properties of interferon-gamma; An overview, studies of production by T lymphocyte subsets, and analysis of peptide synthesis and antiviral effects in trisomy 21 and diploid human fibroblasts, in: The Biology of the Interferon System (E. De Maeyer, G. Galasso, and H. Schellekens, eds.), Elsevier, Amsterdam, pp. 247–256.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Gary J. Nabel
    • 1
    • 2
  1. 1.Department of MedicineBrigham and Women’s HospitalBostonUSA
  2. 2.Harvard Medical SchoolBostonUSA

Personalised recommendations