Advertisement

Human Cytolytic T-Lymphocyte Clones and Their Function-Associated Cell Surface Molecules

  • Alan M. Krensky
  • Steven J. Mentzer
  • Julia L. Greenstein
  • Mary Crimmins
  • Carol Clayberger
  • Timothy A. Springer
  • Steven J. Burakoff

Abstract

Cytolytic T lymphocytes (CTLs) are important effectors in the recognition of viruses,1 allografts,2 and some tumors.3 A molecular understanding of the CTL-target cell interaction therefore may be relevant to the etiology and/or treatment of a variety of disease states. Tissue culture techniques, first reported by Gillis and Smith,4 have allowed the generation of long-term T-cell lines that retain function. A number of human long-term cytolytic T lymphocyte lines have been generated by continued stimulation of peripheral blood lymphocyte lines with “foreign” cells in the presence of the T-cell growth factor interleukin 2 (IL-2).5,6 We have used CTL lines and clones to define target antigens recognized by human allogeneic lymphocytes, to correlate lymphocyte phenotype with antigen specificity, and to generate monoclonal antibodies that block lymphocyte function. Our findings have provided new insights into the cell surface molecules involved in the CTL-target cell interaction. In this chapter we describe our methodologies for the generation and maintenance of CTL lines and clones and the use of the cells in concert with monoclonal antibodies to define and analyze function-associated cell surface molecules.

Keywords

Peripheral Blood Lymphocyte Cell Surface Antigen Cell Surface Molecule Specific CTLs Lymphocyte Clone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burakoff, S. J., Reiss, C. S., Finberg, R., and Mescher, M. F., 1980, Cell mediated immunity to viral glycoproteins, Rev. Infect. Dis. 2:62–77.PubMedCrossRefGoogle Scholar
  2. 2.
    Cerottini, J. C., and Brunner, K. T., 1974, Cell-mediated cytotoxicity, allograft rejection, and immunity, Adv. Immunol. 18:67–132.PubMedCrossRefGoogle Scholar
  3. 3.
    Herberman, R. B., 1974, Cell mediated immunity to tumor cells, Adv. Cancer Res. 19:207–263.PubMedCrossRefGoogle Scholar
  4. 4.
    Gillis, S., and Smith, K. A., 1977, Long-term culture of tumor-specific cytotoxic T cells, Nature 268:154–156.PubMedCrossRefGoogle Scholar
  5. 5.
    Bach, F. H., Inouge, H., Hank, J. A., and Alter, B. J., 1979, Human T lymphocyte clone reactive in primed lymphocyte typing and cytotoxicity, Nature 281:307–309.PubMedCrossRefGoogle Scholar
  6. 6.
    Kornbluth, J., and Dupont, B., 1980, Cloning and functional characterization of primary alloreactive T lymphocytes, J. Exp. Med. 152:164s–181s.PubMedGoogle Scholar
  7. 7.
    Stadler, B. M., Doughterty, S. F., Farrar, J.J., and Oppenheim, J. J., 1981, Relationship of cell cycle to recovery of IL-2 activity from human mononuclear cells, human and mouse T cell lines, J. Immunol. 127:1936–1940.PubMedGoogle Scholar
  8. 8.
    Mier, J. W., and Gallo, R. C., 1980, Purification and some characteristics of human T cell growth factor from phytohemagglutinin-stimulated lymphocyte conditioned media, Proc. Natl. Acad. Sci. USA 77:6134–6138.PubMedCrossRefGoogle Scholar
  9. 9.
    Lefkovits, I., 1979, Limiting dilution analysis, in Immunological Methods, Academic Press, New York, pp. 355–370.Google Scholar
  10. 10.
    Katz, D. S., and Benacerraf, B. (eds.), 1976, The Role of Products of the Histocompatibility Gene Complex in Immune Response, Academic Press, New York.Google Scholar
  11. 11.
    Malissen, B., Kristensen, T., Goridis, C., Madsen, M., and Mawas, C., 1981, Clones of human cytotoxic T lymphocytes derived from an allosensitized individual. HLA specificity and cell surface markers, Scand. J. Immunol. 14:213–224.PubMedCrossRefGoogle Scholar
  12. 12.
    Krensky, A. M., Reiss, C. S., Mier, J. W., Strominger, J. L., and Burakoff, S. J., 1982, Long-term human cytolytic T cell lines allospecific for HLA-DR6 antigen are OKT4+, Proc. Natl. Acad. Sci. USA 79:2365–2369.PubMedCrossRefGoogle Scholar
  13. 13.
    Krensky, A. M., Clayberger, C., Reiss, C. S., Strominger, J. L., and Burakoff, S. J., 1982, Specificity of OKT4+ cytotoxic T lymphocyte clones, J. Immunol. 129:2001–2003.PubMedGoogle Scholar
  14. 14.
    Meuer, S. C., Schlossman, S. F., and Reinherz, E. L., 1982, Clonal analysis of human cytotoxic T lymphocytes; T4+ and T8+ effector T cells recognize products of different major histocompatibility complex regions, Proc. Natl. Acad. Sci. USA 79:4395–4399.PubMedCrossRefGoogle Scholar
  15. 15.
    Spits, H., Borst, J., Terhorst, C., and DeVries, J. E., 1982, The role of T cell differentiation markers in antigen specific and lectin-dependent cellular cytotoxicity mediated by T8+ and T4+ human cytotoxic T cell clones directed at class I and class II MHC antigens, J. Immunol. 129:1563–1569.PubMedGoogle Scholar
  16. 16.
    Ball, E. J., and Stastny, P., 1982, Cell-mediated cytotoxicity against HLA-D region products expressed in monocytes and B lymphocytes. IV. Characterization of effector cells using monoclonal antibodies against human T cell subsets. Immunogenetics 16:157–169.PubMedCrossRefGoogle Scholar
  17. 17.
    Krensky, A. M., Clayberger, C., Greenstein, J., Crimmins, M., and Burakoff, S. J., 1983, A DC-specific cytolytic T lymphocyte line is OKT8 +, J. Immunol 131:2777–2780.PubMedGoogle Scholar
  18. 18.
    Spits, H. H., Yssl, H., Thompson, A., and DeVries, J. E., 1983, Human T4+ and T8+ cytotoxic T lymphocyte clones directed at products of different class II MHC loci, J. Immunol. 131:678–683.PubMedGoogle Scholar
  19. 19.
    Biddison, W. E., Rao, P. E., Talle, M. A., Goldstein, G., and Shaw, J., 1982, Possible involvement of the OKT4 molecule in T cell recognition of class II antigen, J. Exp. Med. 156:1065–1076.PubMedCrossRefGoogle Scholar
  20. 20.
    Reiss, C. S., Hemler, M. E., Engelhard, V. H., Mier, J. W., Strominger, J. L., and Burakoff, S. J., 1980, Development and characterization of allospecific long-term human cytolytic T cell lines, Proc. Natl. Acad. Sci. USA 77:5432–5436.PubMedCrossRefGoogle Scholar
  21. 21.
    Krensky, A. M., Ault, K. A., Reiss, C. S., Strominger, J. L., and Burakoff, S. J., 1982, Generation of long-term human cytolytic cell lines with persistent natural killer activity, J. Immunol. 129:1748–1751.PubMedGoogle Scholar
  22. 22.
    Albrechtsen, D., Arnesen, E., and Thorsby, E., 1979, Cell-mediated lymphocytotoxicity directed against HLA-D gene products, Transplant. 27:338–341.CrossRefGoogle Scholar
  23. 23.
    Feighery, C., and Stastny, P., 1979, HLA-D region-associated determinants serve as targets for human cell-mediated lysis, J. Exp. Med. 149:485–494.PubMedCrossRefGoogle Scholar
  24. 24.
    Moretta, L., Minyari, M. C., Sekaly, P. R., Moretta, A., Capuis, B., and Cerottini, J. C., 1981, Surface markers of cloned human T cells with various cytolytic activities, J. Exp. Med. 154:569–574.PubMedCrossRefGoogle Scholar
  25. 25.
    Zaguiry, D., Bernard, J., Thiemesse, N., Feldman, M., and Berke, G., 1975, Isolation and characterization of individual functionally reactive cytotoxic T lymphocytes, conjugation, killing, and recycling at the single cell level, Eur. J. Immunol. 5:818–822.CrossRefGoogle Scholar
  26. 26.
    Biddison, W. E., Ward, F. E., Shearer, G. M., and Shaw, S., 1980, The self determinants recognized by human virus-immune T cells can be distinguished from the serologically defined HLA antigens, J. Immunol. 124:548–552.PubMedGoogle Scholar
  27. 27.
    Bach, F. H., Bunzendahl, H., Wee, S. L., Iwaki, J., and Segall, M., 1982, Cloning of T lymphocytes in man, in: Isolation, Characterization, and Utilization of T Lymphocyte Clones (C. G. Fathman and F. W. Fitch, eds.), Academic Press, New York, pp. 413–424.Google Scholar
  28. 28.
    Biddison, W. E., Krangel, M. S., Strominger, J. L., Ward, F. E., Shearer, G. M., and Shaw, S., 1980, Virus immune cytotoxic T cells recognize differences between serologically indistinguishable HLA-A2 molecules, Hum. Immunol. 3:225–231.Google Scholar
  29. 29.
    Terasaki, P. I. (ed.), 1980, Histocompatibility Testing, UCLA Tissue Typing Laboratory, Los Angeles, California.Google Scholar
  30. 30.
    Biddison, W. E., Kostyn, D. D., Strominger, J. L., and Krangel, M. S., 1982, Delineation of immunologically and biochemically distinct HLA-A2 antigens, J. Immunol. 129:730–734.PubMedGoogle Scholar
  31. 31.
    Krangel, M. S., Taketani, F., Biddison, W. E., and Strominger, J. L., 1983, Comparative structural analysis of HLA-A2 antigens distinguishable by cytotoxic T lymphocytes: Variants M7 and DRI, Biochemistry 21:6313–6321.CrossRefGoogle Scholar
  32. 32.
    Van der Poel, J. J., Molders, H., and Ploegh, H., 1983, Definition of four HLA-A2 subtypes by CML typing and biochemical analysis, Immunogenetics 17:609–621.PubMedCrossRefGoogle Scholar
  33. 33.
    Burakoff, S. J., Weinberger, O., Krensky, A. M., and Reiss, C. S., 1984, A molecular analysis of the cytotoxic T lymphocyte response, Adv. Immunol. 36:45–85.PubMedCrossRefGoogle Scholar
  34. 34.
    Bernabeu, C., Finlay, D., von de Rijn, M., Maziarz, R. T., Biro, P. A., Spits, H., deVries, J., and Terhorst, C. P., 1983, Expression of the major histocompatibility antigens HLA-A2 and HLA-B7 by DNA-mediated gene transfer, J. Immunol. 131:2032–2037.PubMedGoogle Scholar
  35. 35.
    Bernabeu, C., Maziarz, R., Spits, H., deVries, J., Burakoff, S. J., and Terhorst, C., Coexpression of the human HLA-A2 and HLA-B7 heavy chain gene and human β2-microglobulin gene in L cells, J. Immunol. 133:3188–3194.Google Scholar
  36. 36.
    Barbosa, J. A., Mentzer, S., Strominger, J. L., Burakoff, S. J., and Biro, P. A., 1984, Functional recognition of human HLA-A2 and -B7 antigens following DNA-mediated gene transfer into human, monkey, and mouse cells, Proc. Natl. Acad. Sci. USA 81:7549–7553.PubMedCrossRefGoogle Scholar
  37. 37.
    Kung, P. C., Goldstein, G., Reinherz, E. L., and Schlossman, S. F., 1979, Monoclonal antibodies defining distinctive human T cell surface antigens, Science 206:347–349.PubMedCrossRefGoogle Scholar
  38. 38.
    Ledbetter, J. A., Evans, R. L., Lipinski, M., Cunningham-Rundles, C., Good, R. A., and Herzenberg, L. A., 1981, Evolutionary conservation of surface molecules that distinguish T lymphocyte helper/inducer and T cytotoxic/suppressor subpopulations in mouse and man, J. Exp. Med. 153:310–323.PubMedCrossRefGoogle Scholar
  39. 39.
    Reinherz, E. L., and Schlossman, S. F., 1980, Regulation of the immune response: Inducer and suppressor T lymphocyte subsets in human beings, N. Engl. J. Med. 303:370–373.PubMedCrossRefGoogle Scholar
  40. 40.
    Engleman, E. G., Benike, C. J., Grumet, F. C., and Evans, R. L., 1981, Activation of human T lymphocyte subsets; Helper and suppressor/cytotoxic T cells recognize and respond to distinct histocompatibility antigens, J. Immunol. 127:2124–2129.PubMedGoogle Scholar
  41. 41.
    Thomas, Y. O., Rogozinski, L., Irigoyen, H., Shen, H. H., Talle, M. A., Goldstein, H., and Chess, L., 1982, Functional analysis of human T cell subsets defined by monoclonal antibodies. V. Suppressor cells within the activated OKT4 + population belong to a distinct subset, J. Immunol. 128:1386–1390.PubMedGoogle Scholar
  42. 42.
    Flomenberg, N., Duffy, E., Naito, K., and Dupont, B., 1983, Two distinct types of HLA-DR specific cytotoxic T-cell lines, Immunogenetics 17:317–324.PubMedCrossRefGoogle Scholar
  43. 43.
    Biddison, W. M., Rao, P. E., Talle, M. A., Goldstein, G., and Shaw, S., 1984, Possible involvement of the T4 molecule in T cell recognition of class II HLA antigens: Evidence from studies of CTL-target cell binding, J. Exp. Med. 159:783–797.PubMedCrossRefGoogle Scholar
  44. 44.
    Moretta, A., Pantaleo, G., Mingari, M. C., Moretta, L., and Cerottini, J. C., 1984, Clonal heterogeneity in the requirement for T3, T4, and T8 molecules in human cytolytic T lymphocyte function, J. Exp. Med. 159:921–934.PubMedCrossRefGoogle Scholar
  45. 45.
    Krensky, A. M., Clayberger, C., Greenstein, J. L., Collins, T., Pober, J. S., Robbins, E., Anderson, D., Springer, T. A., and Burakoff, S. J., 1984, Cell surface structures involved in the human cytolytic T lymphocyte response, in: Regulation of the Immune System, Volume 18, Alan Liss, New York, pp. 209–219.Google Scholar
  46. 46.
    Landegren, U., Ramstedt, U., Axberg, I., Ullberg, M., Jondal, J., and Wigell, H., 1982, Selective inhibition of human T cell cytotoxicity at levels of target recognition or initiation of lysis by monoclonal OKT3 and Leu2a antibodies, J. Exp. Med. 155:1579–1584.PubMedCrossRefGoogle Scholar
  47. 47.
    Tsoukas, C. D., Carson, D. A., Fong, S., and Vaughan, J. H., 1982, Molecular interactions in human T cell mediated cytotoxicity to EBV. II. Monoclonal antibody OKT3 inhibits a post-killer-target recognition/adhesion step, J. Immunol. 129:1421–1425.PubMedGoogle Scholar
  48. 48.
    Krensky, A. M., Robbins, E., Springer, T. A., and Burakoff, S. J., 1984, LFA-1, LFA-2, and LFA-3 antigens are involved in CTL-target cell conjugation, J. Immunol. 132:2180–2812.PubMedGoogle Scholar
  49. 49.
    Sanchez-Madrid, F., Krensky, A. M., Ware, C. F., Robbins, E., Strominger, J. L., Burakoff, S. J., and Springer, T. A., 1982, Three distinct antigens associated with human T lymphocyte-mediated cytolysis: LFA-1, LFA-2, and LFA-3, Proc. Natl. Acad. Sci. USA 79:7489–7493.PubMedCrossRefGoogle Scholar
  50. 50.
    Ware, C. F., Sanchez-Madrid, F., Krensky, A. M., Burakoff, S. J., Strominger, J. L., and Springer, T. A., 1983, Human lymphocyte function-associated antigen-1 (LFA-1): Identification of multiple antigenic epitopes and their relationship to CTL-mediated cytotoxicity, J. Immunol. 131:1182–1188.PubMedGoogle Scholar
  51. 51.
    Sanchez-Madrid, F., Nagy, J., Robbins, E., Simon, P., and Springer, T. A., 1983, A human leukocyte differentiation antigen family with distinct alpha subunits and a common beta sub-unit: The lymphocyte-function associated antigen (LFA-1), the C3bi complement receptor (OKM1/Mac-1), and the pl50,95 molecule, J. Exp. Med. 158:1785–1803.PubMedCrossRefGoogle Scholar
  52. 52.
    Krensky, A. M., Sanchez-Madred, F., Robbins, E., Nagy, J., Springer, T. A., and Burakoff, S. J., 1983, The functional significance, distribution, and structure of LFA-1, LFA-2, and LFA-3: Cell surface antigens with the CTL-target interaction, J. Immunol. 131:611–616.PubMedGoogle Scholar
  53. 53.
    Hildreth, J. E. K., Gotch, F. M., Hildreth, P. D. K., and McMichael, A. J., 1983, A human lymphocyte-associated antigen involved in cell-mediated lympholysis, Eur. J. Immunol. 13:202–208.PubMedCrossRefGoogle Scholar
  54. 54.
    Beatty, P. G., Ledbetter, J. A., Martin, P. J., Price, T. H., and Hansen, J. A., 1983, Definition of a common leukocyte cell surface antigen (Lgp95–150) associated with diverse cell-mediated immune functions, J. Immunol. 131:2913–2918.PubMedGoogle Scholar
  55. 55.
    Springer, T. A., Thompson, W. S., Miller, L. J., Schmalstieg, F. C., and Anderson, D. C., 1984, Inherited deficiency of the Mac-1, LFA-1, p150,95 glycoprotein family and its molecular basis, J. Exp. Med. 160:1901–1918.PubMedCrossRefGoogle Scholar
  56. 56.
    Springer, T. A., Rothlein, R., Anderson, D. C., Burakoff, S. J., and Krensky, A. M., 1985, The function of LFA-1 in cell-mediated killing and adhesion: Studies on heritable LFA-1, Mac-1 deficiency and on lymphoid cell self-aggregation, in: Mechanisms of Cell-Mediated Cytotoxicity II (P. Henkart and E. Martz, eds.), Plenum Press, New York, in press.Google Scholar
  57. 57.
    Anderson, D. C., Schmalstieg, F. C., Kohl, S., Arnaout, M. A., Hughes, B. J., Tosi, M. F., Buffone, G. J., Brinkley, B. R., Dickey, W. D., Abramson, J. S., Springer, T. A., Boxer, L. A., Hollers, J. M., and Smith, C. W., 1984, Abnormalities of polymorphonuclear leukocyte function associated with a heritable deficiency of high molecular weight surface glycoproteins (GP138): Common relationship to diminished cell adherence, J. Clin. Invest. 74:536–551.PubMedCrossRefGoogle Scholar
  58. 58.
    Dana, N., Todd, R. F., III, Pitt, J., Springer, T. A., and Arnaout, M. A., 1984, Deficiency of a surface membrane glycoprotein (Mol) in man, J. Clin. Invest. 73:153–159.PubMedCrossRefGoogle Scholar
  59. 59.
    Beatty, P. G., Harlan, J. M., Rosen, H., Hansen, J. A., Ochs, H. D., Price, T. D., Taylor, R. F., and Klebanoff, S. J., 1984, Absence of a monoclonal-antibody-defined protein complex in a boy with abnormal leukocyte function, Lancet 1:535–537.PubMedCrossRefGoogle Scholar
  60. 60.
    Krensky, A. M., Mentzer, S. J., Clayberger, C., Anderson, D., Burakoff, S. J., Schmalstieg, F. C. and Springer, T. A., 1985, Heritable lymphocyte function-associated antigen-1 deficiency: Abnormalities of cytotoxicity and proliferation associated with abnormal expression of LFA-1, manuscript in preparation.Google Scholar
  61. 61.
    Palacios, R., and Martinez-Maza, J., 1982, Is the E receptor on human T lymphocytes a “negative signal receptor”?, J. Immunol. 129:2479–2485.PubMedGoogle Scholar
  62. 62.
    Howard, F. D., Ledbetter, J. A., Wong, J., Bieber, C. P., Stinson, E. B., and Herzenberg, L. A., 1981, A human T lymphocyte differentiation marker defined by monoclonal antibodies that block E rosette formation, J. Immunol. 126:2117–2122.PubMedGoogle Scholar
  63. 63.
    Kamoun, M. P., Martin, P. J., Hansen, J. A., Brown, M. A., Siadak, A. W., and Nowinski, R. C., 1981, Identification of a human T lymphocyte surface protein associated with the E rosette receptor, J. Exp. Med. 153:207–212.Google Scholar
  64. 64.
    Martin, P. J., Longton, G., Ledbetter, J. A., Newman, W., Braun, M. P., Beatty, P. G., and Hansen, J. A., 1983, Identification and functional characterization of two distinct epitopes on the human T cell surface protein Tp50, J. Immunol. 131:180–185.PubMedGoogle Scholar
  65. 65.
    Meuer, S. C., Hussey, R. E., Fabbi, M., Fox, D., Acuto, O., Fitzgerald, K. A., Hodgdon, J. C., Protentis, J., Schlossman, S. F., and Reinherz, E. L., 1984, An alternative pathway of T cell activation: A functional role of the 50 kd T11 sheep erythrocyte receptor protein, Cell 36:897–906.PubMedCrossRefGoogle Scholar
  66. 66.
    Gromkowski, S. H., Krensky, A. M., Martz, E., and Burakoff, S. J., 1985, Functional distinctions between the LFA-1, LFA-2, and LFA-3 membrane proteins on human CTL are revealed with trypsin pre-treated target cells, J. Immunol. 134:244–249.PubMedGoogle Scholar
  67. 67.
    Pober, J. S., Collins, T., Gimbrone, M. A., Cotran, R. S., Gitlin, J., Fiers, W., Clayberger, C., Krensky, A. M., Burakoff, S. J., and Reiss, C. S., 1983, Lymphocytes recognize human vascular endothelial and dermal fibroblast Ia antigens induced by recombinant immune interferon, Nature 305:726–729.PubMedCrossRefGoogle Scholar
  68. 68.
    Collins, T., Krensky, A. M., Clayberger, C., Fiers, W., Gimbrone, M. A., Burakoff, S. J., and Pober, J. S., 1984, Human cytolytic T lymphocyte interactions with vascular endothelium and fibroblasts. Role of effector and target cell molecules, J. Immunol. 133:1878–1884.PubMedGoogle Scholar
  69. 69.
    Meuer, S. C., Fitzgerald, K. A., Hussey, R. E., Hodgdon, J. C., Schlossman, S. F., and Reinherz, E. L., 1983, Clonotypic structures involved in antigen specific human T cell function, J. Exp. Med. 157:705–719.PubMedCrossRefGoogle Scholar
  70. 70.
    Martz, E., 1977, Mechanism of specific tumor cell lysis by alloimmune T lymphocytes. Resolution and characterization of discrete steps in cellular interaction, in: Contemporary Topics in Immunobiology, Volume 7, Plenum Press, New York, pp. 301–361.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Alan M. Krensky
    • 1
  • Steven J. Mentzer
    • 2
    • 3
  • Julia L. Greenstein
    • 2
    • 4
  • Mary Crimmins
    • 2
  • Carol Clayberger
    • 1
  • Timothy A. Springer
    • 5
    • 4
  • Steven J. Burakoff
    • 2
    • 6
  1. 1.Department of PediatricsStanford University School of MedicineStanfordUSA
  2. 2.Division of Pediatric OncologyDana-Farber Cancer InstituteBostonUSA
  3. 3.Department of SurgeryHarvard Medical SchoolBostonUSA
  4. 4.Department of PathologyHarvard Medical SchoolBostonUSA
  5. 5.Laboratory of Membrane ImmunochemistryDana-Farber Cancer InstituteBostonUSA
  6. 6.Department of PediatricsHarvard Medical SchoolBostonUSA

Personalised recommendations