Of all classes of compounds, antibodies provide the greatest range of specificities and affinities. The number of interatomic interactions between an antibody combining site and a large ligand such as a receptor far exceeds those between the common small ligand or drug and its corresponding binding site.1 As a result, there is increased selectivity and affinity. The very large number of potential antibody specificities provides an opportunity to create a finer degree of selectivity than is possible with simpler compounds. Modern studies in the molecular genetics of antibody synthesis indicate that potentially there are at least ten billion different antibody specificities.2,3 This should permit the selective recognition of any structure within the human body.


Antibody Fragment Cardiac Myosin Antiidiotypic Antibody Immunoglobulin Heavy Chain Variable Region Antimyosin Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Poljak, R. J., Amzel, L. M., Avey, H. P., Becka, L. N., and Nisonoff, A. 1972, Structure of Fab’ NEW at 6 A resolution, Nature New Biol. 235:137–140.PubMedCrossRefGoogle Scholar
  2. 2.
    Sakano, H., Kurosawa, Y., Weigert, M., and Tonegawa, S., 1981, Identification and nucleotide sequence of a diversity DNA segment (D) of immunoglobulin heavy-chain genes, Nature 290:562–565.PubMedCrossRefGoogle Scholar
  3. 3.
    Early, P., Huang, H., Davis, M., Calame, K., and Hood, L., 1980, An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D, and JH, Cell 19:981–992.PubMedCrossRefGoogle Scholar
  4. 4.
    Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells producing antibody of predefined specificity, Nature 256:495–497.PubMedCrossRefGoogle Scholar
  5. 5.
    Fazekas de St. Groth, S., 1983, Automated production of fused cells secreting antibody of predefined specificity, J. Immunol. Meth. 57:121–136.CrossRefGoogle Scholar
  6. 6.
    Rice, D., and Baltimore, D., 1982, Regulated expression of an immoglobulin kappa gene introduced into a mouse lymphoid cell line, Proc. Natl. Acad. Sci. USA 79:7862–7865.PubMedCrossRefGoogle Scholar
  7. 7.
    Oi, V. T., Morrison, S. L., Herzenberg, L. A., and Berg, P., 1983, Immunoglobulin gene expression in transformed lymphoid cells, Proc. Natl. Acad. Sci. USA 80:825–829.PubMedCrossRefGoogle Scholar
  8. 8.
    Smith, T. W., Butler, V. P., Jr., Haber, E., Fozzard, H., Marcus, F. I., Bremner, W. F., Schulman, I. C., and Phillips, A., 1982, Treatment of life-threatening digitalis intoxication with digoxin-specific Fab antibody fragments: Experience in 26 cases, N. Engl. J. Med. 307:1357–1362.PubMedCrossRefGoogle Scholar
  9. 9.
    Khaw, B. A., Gold, H. K., Yasuda, T., Leinbach, R. C., Strauss, H. W., Fallon, J. T., Cahill, S. L., and Haber, E., 1982, Acute myocardial infarct imaging with technetium-99m-DPTA-antimyosin Fab, Circulation 66:272 (abstract).CrossRefGoogle Scholar
  10. 10.
    Smith, T. W., Lloyd, B. L., Spicer, N., and Haber, E., 1979, Immunogenicity and kinetics of distribution and elimination of sheep digoxin-specific IgG and Fab fragments in the rabbit and baboon, Clin. Exp. Immunol. 36:384–396.PubMedGoogle Scholar
  11. 11.
    Olsson, L., and Kaplan, H. S., 1980, Human-human hybridomas producing monoclonal antibodies of predefined antigenic specificity, Proc. Natl. Acad. Sci. USA 77:5429–5431.PubMedCrossRefGoogle Scholar
  12. 12.
    Croce, C. M., Linnenbach, A., Hall, W., Steplewski, Z., and Koprowski, H., 1980, Production of human hybridomas secreting antibodies to measles virus, Nature 288:488–489.PubMedCrossRefGoogle Scholar
  13. 13.
    Seidman, J. G., Leder, A., Nau, M., Norman, B., and Leder, P., 1978, A kappa-immunoglobulin gene is formed by site-specific recombination without further somatic mutation, Science 202:11–17.PubMedCrossRefGoogle Scholar
  14. 14.
    Homey, C. J., Rockson, S. G., and Haber, E., 1982, An antiidiotypic antibody that recognizes the ß-adrenergic receptor, J. Clin. Invest. 69:1147–1154.CrossRefGoogle Scholar
  15. 15.
    Goldblatt, H., Lynch, J., Hanzal, R. F., Ramon, F., and Summerville, W. W., 1934, Studies on experimental hypertension. 1. The production of persistent elevation of systolic blood pressure by means of renal ischemia, J. Exp. Med. 59:347–379.PubMedCrossRefGoogle Scholar
  16. 16.
    Hollenberg, N. K., Williams, G. H., Burger, B., Ishikawa, I., and Adams, D. F., 1979, Blockade and Stimulation of renal 1-Sar, 8-Ala angiotensin II in normal man, J. Clin. Invest. 57:39–46.CrossRefGoogle Scholar
  17. 17.
    Swartz, S. L., Williams, G. H., Hollenberg, N. K., Moore, T. J., and Dluhy, R. G., 1979, Converting enzyme inhibition in essential hypertension: The hypotensive response does not reflect only reduced angiotensin II formation, Hypertension 1:106–111.PubMedGoogle Scholar
  18. 18.
    Goldstone, R., Martin, K., Zipser, R., and Horton, R., 1981, Evidence for a dual action of converting enzyme inhibitor on blood pressure in normal man, Prostaglandins 22:587–598.PubMedCrossRefGoogle Scholar
  19. 19.
    Dzau, V. J., Kopelman, R. I., Barger, A. C., and Haber, E., 1980, Renin-specific antibody for study of cardiovascular homeostasis, Science 207:1091–1093.PubMedCrossRefGoogle Scholar
  20. 20.
    Dzau, V. J., Kopelman, R. I., Barger, A. C., and Haber, E., 1984, Comparison of renin-specific IgG and antibody fragments in studies of blood pressure regulation, Am. J. Physiol. 246:H404–H409.PubMedGoogle Scholar
  21. 21.
    Dzau, V. J., Devine, D., Mudgett-Hunter, M., Kopelman, R. I., Barger, A. C., and Haber, E., 1983, Antibodies as specific renin inhibitors: Studies with polyclonal and monoclonal antibodies and Fab fragments. Clin. Exper. Hypertension A5(7&8):1207–1220.CrossRefGoogle Scholar
  22. 22.
    Aeberhard, P., Bulter, V. P., Smith, T. W., Haber, E., Tseeng, D., Brau, J., Chalom, A., Glatt, B., Thébaut, J. F., Delangenhagen, B., and Morin, B., 1980, Le traitement d’une intoxication digitalique massive (20 mg de digitoxine) par les anticorps anti-digoxine fractionés (Fab), Arch. Mal. Coeur 73:1471–1478.PubMedGoogle Scholar
  23. 23.
    Bismuth, C., Gaulthier, M., Conso, F., and Efthymiou, M. L., 1973, Hyperkalemia in acute digitalis poisoning: Prognostic significance and therapeutic implications, Clin. Toxicol. 6:153–162.PubMedCrossRefGoogle Scholar
  24. 24.
    Khaw, B. A., Beller, G. A., Haber, E., and Smith, T. W., 1976, Localization of cardiac myosin-specific antibody in experimental myocardial infarction, J. Clin. Invest. 58:439–446.PubMedCrossRefGoogle Scholar
  25. 25.
    Hui, K. Y., Matsueda, G. R., and Haber, E., 1983, Monoclonal antibodies to a synthetic fibrinlike peptide bind to human fibrin but not fibrinogen, Science 222:1129–1131.PubMedCrossRefGoogle Scholar
  26. 26.
    Haber, E., 1984, Monoclonal antibodies: Their potential as in vivo diagnostic and therapeutic agents, in: Monoclonal Antibodies and New Trends in Immunoassays (C. A. Bizollon, ed.), Elsevier, Amsterdam, pp. 81–90.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Edgar Haber
    • 1
    • 2
  1. 1.Cardiac Unit and Cellular and Molecular Research LaboratoryMassachusetts General HospitalBostonUSA
  2. 2.Department of MedicineHarvard Medical SchoolBostonUSA

Personalised recommendations