Expression of Foreign Proteins on the Surface of Xenopus laevis Oocytes

  • Jay C. Unkeless
  • Daniel A. Portnoy
  • Andrew D. Luster
  • Ellen Pure


Xenopus laevis oocytes have been widely used as an in vitro translation system for exogenous mRNAs. The utility of the oocyte translation system was first demonstrated by Gurdon and his colleagues,1 who detected β-globin after injection of reticulocyte mRNA. Subsequently, all eukaryotic mRNAs tested have directed the synthesis of the appropriate protein after injection into oocytes. A major advantage of the system is that the translation by oocytes is as much as 100- to 1000-fold more efficient than wheat germ lysate and rabbit reticulocyte lysate translation systems. This allows detection of translated products by radioimmune assays, ELISA, or biological activity. The efficiency of the translation is due, in part, to the stability of the injected mRNA. The half-life of injected globin mRNA, for example, is greater than 2 weeks.2


U937 Cell Xenopus Oocyte Xenopus Laevis Oocyte L5178Y Cell Oocyte Plasma Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gurdon, J. B., Lane, C. D., Woodland, H. R., and Marbaix, G., 1971, Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells, Nature 233:177–182.PubMedCrossRefGoogle Scholar
  2. 2.
    Gurdon, J. B., Lingril, J. D. and Marbaix, G., 1973, Message stability in injected frog oocytes: Long life of mammalian α and β globin messages, J. Mol. Biol. 80:539.PubMedCrossRefGoogle Scholar
  3. 3.
    Mous, J., Peeters, B., Rombauts, W., and Heynes, W., 1982, Assembly, glycosylation and secretion of the oligomeric rat prostatic binding protein in Xenopus oocytes, J. Biol. Chem. 257:11822–11828.PubMedGoogle Scholar
  4. 4.
    Mertens, B., and Verhoeven, G., 1981, Synthesis and processing of pre-alpha-2μ-globulin in different translation systems, FEBS Lett. 133:209–212.PubMedCrossRefGoogle Scholar
  5. 5.
    Bock, S. C., Tiemeier, D. C., Mester, K., Wu, M., and Goldsmith, M. R., 1982, Hybridization-selected translation of Bombix mori high-cysteine chorion proteins in Xenopus Jaevis oocytes. Proc. Natl. Acad. Sci. USA 79:1032–1036.PubMedCrossRefGoogle Scholar
  6. 6.
    Jilka, R. L., Familletti, P., and Pestka, S., 1979, Synthesis and processing of the mouse MOPC-321 k chain in Xenopus Jaevis oocytes, Arch. Biochem. Biophys. 192:290–295.CrossRefGoogle Scholar
  7. 7.
    Berridge, M. V., and Lane, C. D., 1976, Translation of Xenopus liver messenger RNA in Xenopus oocytes: Vitellogin synthesis and conversion to yolk platelet proteins, Cell 8:283–297.PubMedCrossRefGoogle Scholar
  8. 8.
    Gedami, L., Dixon, G. H., and Gurdon, J. B., 1978, Studies of the injection of poly(A) + protamine mRNA into Xenopus Jaevis oocytes, Exp. Cell Res. 117:325–334.CrossRefGoogle Scholar
  9. 9.
    Matthews, J. A., Brown, J. W. S., and Hall, T. C., 1981, Phaseolin mRNA is translated to yield glycosylated polypeptides in Xenopus oocytes, Nature 294:175–176.PubMedCrossRefGoogle Scholar
  10. 10.
    Richter, J. D., Evers, D. C., and Smith, L. D., 1983, The recruitment of membrane-bound mRNAs for translation in microinjected oocytes, J. Biol. Chem. 258:2614–2620.PubMedGoogle Scholar
  11. 11.
    Valle, G., Besley, J., and Coleman, A., 1981, Synthesis and secretion of mouse immunoglobulin chains from Xenopus laevis oocytes, Nature 291:5913.CrossRefGoogle Scholar
  12. 12.
    Mous, J., Peeters, B., and Rombauts, W., 1980, Synthesis and core glycosylation of the alpha subunit of human chorionic gonadotropin in Xenopus oocytes, FEBS Lett. 122:105–108.PubMedCrossRefGoogle Scholar
  13. 13.
    DeHerdt, E., Marbaix, G., Tencer, R., and Siegers, H., 1983, Subcellular distribution in Xenopus laevis oocytes of a microinjected poly(A)-binding protein from Artemia salina gastrulae, Eur. J. Biochem. 132:623–627.CrossRefGoogle Scholar
  14. 14.
    Colman, A., Lane, C. D., Craig, R., Boulton, A., Mohun, T., and Morser, J., 1981, The influence of topology and glycosylation on the fate of heterologous secretory proteins made in Xenopus oocytes, Eur. J. Biochem. 113:339–342.PubMedCrossRefGoogle Scholar
  15. 15.
    Colman, A., and Morser, J., 1979, Export of proteins from oocytes of Xenopus laevis, Cell 17:517–526.PubMedCrossRefGoogle Scholar
  16. 16.
    Soreq, H., Parvari, R., and Silman, I., 1982, Biosynthesis and secretion of catalytically active acetylcholinesterase in Xenopus oocytes microinjected with mRNA from rat brain and Torpedo electric organ, Proc. Natl. Acad. Sci. USA 79:830–834.PubMedCrossRefGoogle Scholar
  17. 17.
    Mishkin, A., and Soreq, H., 1981, Microinjected Xenopus oocytes synthesize active plasminogen activator, Nucleic Acids Res. 9:3355.CrossRefGoogle Scholar
  18. 18.
    Labaraca, C., and Paigen, K., 1977, mRNA-directed synthesis of catalytically active mouse ß-glucuronidase in Xenopus oocytes, Proc. Natl. Acad. Sci. USA 74:4462–4465.CrossRefGoogle Scholar
  19. 19.
    Reynolds, F. H., Jr., Premkumar, E., and Petha, P. M., 1975, Interferon activity produced by translation of human interferon messenger RNA in cell free ribosomal systems and in Xenopus oocytes, Proc. Natl. Acad. Sci. USA 72:4881–4885.PubMedCrossRefGoogle Scholar
  20. 20.
    Lebleu, B., Hubert, E., Content, J., DeWit, L., Brande, I. A., and DeClercq, E., 1978, Translation of mouse interferon mRNA in Xenopus sequences, Proc. Natl. Acad. Sci. USA 78:1741–1745.Google Scholar
  21. 21.
    Cavalieri, R. L., Havel, E. A., Vilcek, J., and Pestka, S., 1977, Synthesis of human interferon by Xenopus Jaevis oocytes: Two structural genes for interferons in human cells, Proc. Natl. Acad. Sci. USA 74:3287–3291.PubMedCrossRefGoogle Scholar
  22. 22.
    Soreq, H., Sagar, A. D., and Sehgal, P. B., 1981, Translational activity and functional stability of human fibroblast β1 and β2 interferon mRNAs lacking 3′-terminal RNA sequences, Proc. Natl. Acad. Sci. USA 78:1741–1745.PubMedCrossRefGoogle Scholar
  23. 23.
    Sumikawa, K., Houghton, M., Emtage, J. S., Richards, B. M., and Barnard, E. A., 1981, Active multi-subunit Ach receptor assembled by translation of heterologous mRNA in Xenopus oocytes, Nature 292:862–864.PubMedCrossRefGoogle Scholar
  24. 24.
    Mishna, M., Kurosaki, T., Tobimatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M., and Numa, S., 1984, Expression of functional acetylcholine receptor from cloned cDNAs, Nature 307:604–608.CrossRefGoogle Scholar
  25. 25.
    Gunderson, C. B., Miledi, R., and Parker, I., 1984, Messenger RNA from human brain induces drug- and voltage-operated channels in Xenopus oocytes, Nature 308:421–424.CrossRefGoogle Scholar
  26. 26.
    Houamed, K. M., Bilbe, G., Smart, T. G., Constanti, A., Brown, D. A., Barnard, E. A., and Richards, B. M., 1984, Expression of functional GABA, glycine and glutamate receptors in Xenopus oocytes injected with rat brain mRNA, Nature 310:318–321.PubMedCrossRefGoogle Scholar
  27. 27.
    Pure, E., Luster, A. D., and Unkeless, J. C., 1984, Cell surface expression of murine, rat, and human Fc receptors by Xenopus oocytes, J. Exp. Med. 160:606–611.PubMedCrossRefGoogle Scholar
  28. 28.
    Unkeless, J. C., and Healy, G. A., 1983, Quantitation of proteins and internal antigen pools by a monoclonal sandwich radioimmune assay, J. Immunol. Meth. 56:1–12.CrossRefGoogle Scholar
  29. 29.
    Unkeless, J. C., 1979, Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors, J. Exp. Med. 150:580–596.PubMedCrossRefGoogle Scholar
  30. 30.
    Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., and Rutter, W. J., 1979, Isolation of biologically active ribonucleic acid from sources enriched in ribonucleases, Biochemistry 18:5294.PubMedCrossRefGoogle Scholar
  31. 31.
    Mellman, I. S., Steinman, R. M., Unkeless, J. C., and Cohn, Z. A., 1980, Selective iodination and polypeptide composition of pinocytic vesicles, J. Cell. Biol. 86:712–720.PubMedCrossRefGoogle Scholar
  32. 32.
    Kulczycki, A., Jr., and Metzger, H., 1974, The interaction of IgE with rat basophilic leukemia cells. II. Quantitative aspects of the binding reaction, J. Exp. Med. 140:1676–1684.PubMedCrossRefGoogle Scholar
  33. 33.
    Liu, F.-T., Bohn, J. W., Ferry, E. L., Yamamoto, H., Molinaro, C. A., Sherman, L. A., Klinman, N. R., and Katz, D. H., 1980, Monoclonal dinitrophenyl-specific murine IgE antibody: Preparation, isolation and characterization, J. Immunol. 124:2728–2732.PubMedGoogle Scholar
  34. 34.
    Guyre, P. M., Morganelli, P. M., and Miller, R., 1983, Recombinant immune interferon increases IgG Fc receptors on cultured mononuclear phagocytes, J. Clin. invest. 72:393–397.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Jay C. Unkeless
    • 1
  • Daniel A. Portnoy
    • 1
  • Andrew D. Luster
    • 1
  • Ellen Pure
    • 1
  1. 1.Laboratory of Cellular Physiology and ImmunologyRockefeller UniversityNew YorkUSA

Personalised recommendations