Screening λgt11 Expression Libraries with Antibody Probes

  • Michael Snyder
  • Ronald W. Davis


Antibodies can be used as probes to isolate directly a particular gene of interest. A recombinant DNA library is first constructed in an Escherichia coli expression vector, and foreign antigens are expressed in E. coli from the DNA inserts. The antigens produced are transferred onto nitrocellulose filters and then probed with antibody to detect the desired recombinant. This approach is rapid, and is particularly useful for isolating genes that are expressed at a low level and therefore are difficult to isolate using techniques employing nucleic acid probes (see Ref. 1) or by hybrid/selection methods.2 This chapter describes methods for isolating eukaryotic genes by constructing and screening E. coli expression vector libraries with antibody probes using the bacteriophage expression vector λgt11.3,4


lacZ Gene Expression Library Antibody Probe locI Plasmid Overlay Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maniatis, T., Fritsch, E. F., and Sambrook, J., 1982, Molecular Cloning, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  2. 2.
    Ricciardi, R. P., Miller, J. S., and Roberts, B. E., 1979, Purification and mapping of specific mRNAs by hybridization-selection and cell-free translation, Proc. Natl. Acad. Sci. USA 76:4927–4931.PubMedCrossRefGoogle Scholar
  3. 3.
    Young, R. A., and Davis, R. W., 1983, Efficient isolation of genes by using antibody probes, Proc. Natl. Acad. Sci. USA 80:1194–1198.PubMedCrossRefGoogle Scholar
  4. 4.
    Young, R. A., and Davis, R. W., 1984, Yeast RNA polymerase II genes: Isolation with antibody probes, Science 222:778–782.CrossRefGoogle Scholar
  5. 5.
    Kupper, H., Keller, W., Kurtz, C., Forss, S., Schaller, H., Franze, R., Strommaier, K., Marquardt, O., Zaslavsky, V. C., and Hofschneider, P. H., 1981, Cloning of cDNA of major antigen of foot and mouth disease virus and expression in E. coli, Nature 289:555–559.PubMedCrossRefGoogle Scholar
  6. 6.
    Stanley, K., 1983, Solubilization and immune-detection of β-galactosidase hybrid proteins carrying foreign antigenic determinants, Nucleic Acids Res. 11:4077–4092.PubMedCrossRefGoogle Scholar
  7. 7.
    Calos, M. P., Lebkowski, T. S., and Botchan, M. R., 1983, High mutation frequency in DNA transfected into mammalian cells, Proc. Natl. Acad. Sci. USA 80:3015–3019.PubMedCrossRefGoogle Scholar
  8. 8.
    Huynh, T. V., Young, R. A., and Davis, R. W., 1984, Constructing and screening cDNA libraries in λgt10 and λgt11, DNA Cloning Techniques: A Practical Approach (D. Glover, ed.), IRL Press, Oxford.Google Scholar
  9. 9.
    Goto, T., and Wang, J. C., 1984, Yeast DNA topoisomerase II is encoded by a single-copy, essential gene, Cell 36:1073–1080.PubMedCrossRefGoogle Scholar
  10. 10.
    Davis, R. W., Botstein, D., and Roth, J. R., 1980, Advanced Bacterial Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  11. 11.
    Young, R. A., and Davis, R. W., 1984, Immunoscreening λgt11 recombinant DNA expression libraries, Genetic Engineering Volume 7 (J. Setlow and A. Hollaender, eds.), Plenum Press, New York.Google Scholar
  12. 12.
    Burnette, W. N., 1981, “Western Blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A, Anal. Biochem. 112:195–203.PubMedCrossRefGoogle Scholar
  13. 13.
    Kemp, D. J., Coppel, R. L., Cowman, A. F., Saint, R. B., Brown, G. V., and Anders, R. F., 1983, Expression of Plasmodium falciparum blood-stage antigens in Escherichia coli: Detection with antibodies from immune humans, Proc. Natl. Acad. Sci. USA 80:3787–3791.PubMedCrossRefGoogle Scholar
  14. 14.
    Peterson, R. C., Cheung, L. C., Mattaliano, R. V., Chang, L. M. S., and Bollum, F. J., 1984, Molecular cloning of human terminal deoxynucleotidyltransferase, Proc. Natl. Acad. Sci. USA 81:4363–4367.PubMedCrossRefGoogle Scholar
  15. 15.
    Landau, N. R., St. John T. P., Weissman, I. L., Wolf, S. C., Silverstone, A. E., and Baltimore, D., 1984, Cloning of terminal transferase cDNA by antibody screening, Proc. Natl. Acad. Sci. USA 81:5836–5840.PubMedCrossRefGoogle Scholar
  16. 16.
    Schwarzbauer, J. E., Tamkun, J. W., Lemischka, I. R., and Hynes, R. O., 1983, Three different fibronectin mRNAs arise by alternative splicing within the coding region, Cell 35:421–431.PubMedCrossRefGoogle Scholar
  17. 17.
    Leytus, S. P., Chung, D. W., Kisiel, W., Kurachi, K., and Davie, E. W., 1984, Characterization of a cDNA coding for human factor X, Proc. Natl. Acad. Sci. USA 81:3699–3702.PubMedCrossRefGoogle Scholar
  18. 18.
    Badaracco, G., Capucci, L., Plevani, P., and Chang, L. M. S., 1983, Polypeptide structure of DNA polymerase I from Saccharomyces cerevisiae, J. Biol. Chem. 258:10720–10726.PubMedGoogle Scholar
  19. 19.
    Chang, L. M. S., 1977, DNA polymerases from bakers yeast, J. Biol. Chem. 252:1873–1880.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Michael Snyder
    • 1
  • Ronald W. Davis
    • 1
  1. 1.Department of Biochemistry, School of MedicineStanford UniversityStanfordUSA

Personalised recommendations