Amplification and Molecular Cloning of Transfected Genes

  • Paula Kavathas


The transfection of genes into recipient cells is a very exciting tool because of the diversity of problems that can be attacked and because of the elegance of the answers. For instance, transfer of cloned MHC or immunoglobulin genes has provided important knowledge of the structure, function, and regulation of these genes. Many important genes have been cloned by transfecting with total cellular DNA, selecting transfectants expressing the gene, and then isolating the transferred gene by one of several methods. The identification and cloning of cellular oncogenes, a major breakthrough in the past few years, was an achievement that may not have been possible or have occurred as swiftly without our ability to transfer DNA into mammalian cells and isolate transfectants.


Recipient Cell Thymidine Kinase Gene DHFR Gene Cellular Oncogene Adenine Phosphoribosyltransferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wigler, M., Sweet, R., Sim, G. K., Wold, B., Pellicer, A., Lacy, E., Maniates, T., Silverstein, S., and Axel, R., 1979, Transformation of mammalian cells with genes from procaryotes and eucaryotes, Cell 16:777–785.PubMedCrossRefGoogle Scholar
  2. 2.
    Kavathas, P., and Herzenberg, L. A., 1983, Stable transformation of mouse L cells for human membrane T cell differentiation antigens, HLA and B2-microglobulin: Selection by fluorescence activated cell sorting, Proc. Natl. Acad. Sci. USA 80:524–528.PubMedCrossRefGoogle Scholar
  3. 3.
    Newman, R., Domingo, D., Trotter, J., and Trowbridge, I., 1983, Selection and properties of a mouse L-cell transformant expressing human transferrin receptor, Nature 304:643–645.PubMedCrossRefGoogle Scholar
  4. 4.
    Kuhn, L. C., McClelland, A., and Ruddle, F. H., 1984, Gene transfer, expression, and molecular cloning of the human transferrin receptor gene, Cell 37:95–103.PubMedCrossRefGoogle Scholar
  5. 5.
    Stanners, C. P., Lam, T., Chamberlain, J. W., Stewart, S. S., and Price, G. B., 1981, Cloning of a functional gene responsible for the expression of a cell surface antigen correlated with human chronic lymphocytic leukemia, Cell 27:211–221.PubMedCrossRefGoogle Scholar
  6. 6.
    Kavathas, P., Sukhatme, V. P., Herzenberg, L. A., and Parnes, J. R., 1984, Isolation of the gene coding for the human T lymphocyte differentiation antigen of Leu-2 (T8) by gene transfer and cDNA subtraction, Proc. Natl. Acad. Sci. USA 81:7688–7692.PubMedCrossRefGoogle Scholar
  7. 7.
    Loyter, A., Scangos, G. A., and Ruddle, F. H., 1982, Mechanisms of DNA uptake by mammalian cells: Fate of exogenously added DNA monitored by the use of fluorescent dyes, Proc. Natl. Acad. Sci. USA 79:422–426.PubMedCrossRefGoogle Scholar
  8. 8.
    Law, M. F., Lowy, D. R., Dvoretzky, I., and Howley, P. M., 1981, Mouse cells transformed by bovine papillomavirus contain only extrachromosomal viral DNA sequences, Proc. Natl. Acad. Sci. USA 78:2727–2731.PubMedCrossRefGoogle Scholar
  9. 9.
    Yates, J., Warren, N., Reisman, D., and Sugden, B., 1984, A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells, Proc. Natl. Acad. Sci. USA 81:3806–3810.PubMedCrossRefGoogle Scholar
  10. 10.
    Robins, D. M., Ripler, S., Henderson, A. S., and Axel, R., 1981, Transforming DNA integrates into the host chromosome, Cell 23:29–39.PubMedCrossRefGoogle Scholar
  11. 11.
    Perucho, M., Hanahan, D., and Wigler, M., 1980, Genetic and physical linkages of exogenous sequences in transformed cells, Cell 22:309–317.PubMedCrossRefGoogle Scholar
  12. 12.
    Kucherlapati, R. S., Eves, E. M., Song, K. Y., Morse, B. S., and Smithies, O., 1984, Homologous recombination between plasmids in mammalian cells can be enhanced by treatment of input DNA, Proc. Natl. Acad. Sci. USA 81:3153–3157.PubMedCrossRefGoogle Scholar
  13. 13.
    Anderson, R. A., Krakauer, T., and Camerini-Otero, R. D., 1982, DNA-mediated gene transfer: Recombination between cotransferred DNA sequences and recovery of recombinants in a plasmid, Proc. Natl. Acad. Sci. USA 79:2748–2752.PubMedCrossRefGoogle Scholar
  14. 14.
    Calos, M. P., Lebkowski, J. S., and Botchan, M. R., 1983, High mutation frequency in DNA transfected into mammalian cells, Proc. Natl. Acad. Sci. USA 80:3015–3019.PubMedCrossRefGoogle Scholar
  15. 15.
    Wigler, M., Sweet, R., Sim, G. K., Wold, B., Pellicer, A., Lacy, E., Maniatis, T., Silverstein, S., and Axel, R., 1979, Transformation of mammalian cells with genes from procaryotes and eucaryotes, Cell 16:777–785.PubMedCrossRefGoogle Scholar
  16. 16.
    Christy, B., and Scangos, G., 1982, Expression of transferred thymidine kinase genes is controlled by methylation, Proc. Natl Acad. Sci. USA 79:6299–6303.PubMedCrossRefGoogle Scholar
  17. 17.
    Clough, D. W., Kunkel, L. M., and Davidson, R. L., 1982, 5-Azacytidine-induced reactivation of a herpes simplex thymidine kinase gene, Science 216:70–73.Google Scholar
  18. 18.
    Davies, R. L., Fuhrer-Krusi, S., and Kucherlapati, R. S., 1982, Modulation of transfected gene expression mediated by changes in chromatin structure, Cell 31:521–529.PubMedCrossRefGoogle Scholar
  19. 19.
    Ruddle, F. H., Kamarck, M. E., McClelland, A., and Kuhn, L. C., 1984, DNA-mediated gene transfer in mammalian gene cloning, in: Genetic Engineering, Volume 6 (J. K. Setlow and A. Hollaender, eds.), Plenum Press, New York, pp. 319–338.Google Scholar
  20. 20.
    Graham, F. L., and van der Eb, A. J., 1973, A new technique for the assay of infectivity of human adenovirus 5 DNA, Virology 52:456–467.PubMedCrossRefGoogle Scholar
  21. 21.
    Klebe, R. G., Harriss, J., Hanson, D. P., and Gauntt, C. J., 1984, High efficiency polyethylene glycol mediated transformation of mammalian cells, Somat. Cell Mol. Genet. 10:495–502.PubMedCrossRefGoogle Scholar
  22. 22.
    Neumann, E., Schaefer-Riddler, M., Wang, Y., and Hofschneider, P. H., 1982, Gene transfer into mouse myeloma cells by electroporation in high electric fields, EMBO J. 1:841–845.PubMedGoogle Scholar
  23. 23.
    Potter, H., Weir, L., and Leder, P., 1983, Enhancer-dependent expression of human K immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation, Proc. Natl. Acad. Sci. USA 81:7161–7165.CrossRefGoogle Scholar
  24. 24.
    Capecchi, M. R., 1980, High efficiency transformation by direct microinjection of DNA into cultured mammalian cells, Cell 22:479–488.PubMedCrossRefGoogle Scholar
  25. 25.
    Ishiura, M., Hirose, S., Uchida, T., Hamada, Y., Suzuki, Y., and Okada, Y., 1982, Phage particle-mediated gene transfer to cultured mammalian cells, Mol. Cell Biol. 2:607–616.PubMedGoogle Scholar
  26. 26.
    Schaffner, W., 1980, Direct transfer of cloned genes from bacteria to mammalian cells, Proc. Natl. Acad. Sci. USA 77:2163–2167.PubMedCrossRefGoogle Scholar
  27. 27.
    Sandri-Goldin, R. M., Goldin, A. L., Levine, M., and Glorioso, J., 1983, High-efficiency transfer of DNA into eukaryotic cells by protoplast fusion, Meth. Enzymol. 101:402–411.PubMedCrossRefGoogle Scholar
  28. 28.
    Straubinger, R. M., and Papahadjopoulos, D., 1983, Liposome-mediated DNA transfer, in: Techniques in Somatic Cell Genetics (J. W. Shay, ed.) Plenum Press, New York, pp. 399–413.Google Scholar
  29. 29.
    Cepro, C. L., Roberts, T. E., and Mulligan, R. C., 1984, Construction and applications of a highly transmissible murine retrovirus shuttle vector, Cell 37:1053–1062.CrossRefGoogle Scholar
  30. 30.
    Gluzman, Y., 1982, Eukaryotic Viral Vectors, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  31. 31.
    McCutchan, J. H., and Pagano, J. S., 1968, Enhancement of the infectivity of simian virus 40 deoxyribonucleic acid with diethylaminoethyl-dextran, J. Natl. Cancer Inst. 41:351–357.PubMedGoogle Scholar
  32. 32.
    Kit, S., Dubbs, P., Pierkarski, L., and Hsu, T., 1963, Deletion of thymidine kinase activity from L cells resistant to bromodeoxyuridine, Exp. Cell Res. 31:297–312.PubMedCrossRefGoogle Scholar
  33. 33.
    Graf, L. H., Jr., Kaplan, P., and Silagi, S., 1984, Efficient DNA-mediated transfer of selectable genes and unselected sequences into differentiated and undifferentiated mouse melanoma clones, Somat. Cell Mol. Genet. 10:139–151.PubMedCrossRefGoogle Scholar
  34. 34.
    Oi, V. T., Morrison, S., Herzenberg, L. A., and Berg, P. A., 1983, Immunoglobulin gene expression in transformed lymphoid cells, Proc. Natl. Acad. Sci. USA 80:825–829.PubMedCrossRefGoogle Scholar
  35. 35.
    Deans, R. J., Denis, K. A., Taylor, A., and Wall, R., 1984, Expression of an immunoglobulin heavy chain gene transfected into lymphocytes, Proc. Natl. Acad. Sci. USA 81:1292–1296.PubMedCrossRefGoogle Scholar
  36. 36.
    Pellicer, A., Wigler, M., Axel, R., and Silverstein, S., 1978, The transfer and stable integration of the HSV thymidine kinase gene into mouse cells, Cell 14:133–141.PubMedCrossRefGoogle Scholar
  37. 37.
    Minson, A. C., Wildy, P., Buchan, A., and Darby, G., 1978, Introduction of the herpes simplex virus thymidine kinase gene into mouse cells using virus DNA or transformed cell DNA, Cell 13:581–587.PubMedCrossRefGoogle Scholar
  38. 38.
    Wigler, M., Pellicer, A., Silverstein, S., and Axel, R., 1978, Biochemical transfer of single copy eukaryotic genes using total cellular DNA as donor, Cell 14:725–731.PubMedCrossRefGoogle Scholar
  39. 39.
    Lester, S. C., LeVan, S. K., Steglich, C., and DeMars, R., 1980, Expression of human genes for adenine phosphoribosyltransferase and hypoxanthine-guanine phosphoribosyltransferase after genetic transformation of mouse cells with purified human DNA, Somat. Cell Genet. 6:241–259.PubMedCrossRefGoogle Scholar
  40. 40.
    Southern, P. J., and Berg, P., 1982, Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promotor, J. Mol. Appl. Genet. 1:327–341.PubMedGoogle Scholar
  41. 41.
    Mulligan, R. C., and Berg, P., 1981, Factors governing the expression of a bacterial gene in mammalian cells, Mol. Cell. Biol. 1:449–459.PubMedGoogle Scholar
  42. 42.
    Kucherlapati, R. S., and Skoultchi, A. I., 1984, Introduction of purified genes into mammalian cells, CRC. Rev. Biochem. 16:349–381.CrossRefGoogle Scholar
  43. 43.
    Shih, C., Padhy, L. C., Murray, M., and Weinberg, R. A., 1981, Transforming genes of carcinomas and neuroblastomas into mouse fibroblasts, Nature 290:261–264.PubMedCrossRefGoogle Scholar
  44. 44.
    Hsu, C., Kavathas, P., and Herzenberg, L. A., 1984, Cell-surface antigens in L cells transfected with whole DNA from non-expressing and expressing cells, Nature 312:68–69.PubMedCrossRefGoogle Scholar
  45. 45.
    Westerveld, A., Hoeijmakers, J. H. J., van Duin, M., de Wit, J., Odijk, H., Patsink, A., Wood, R. D., and Bootsma, D., 1984, Molecular cloning of a human DNA repair gene, Nature 310:425–428.PubMedCrossRefGoogle Scholar
  46. 46.
    Perucho, M., Hanahan, D., Lipsich, L., and Wigler, M., 1980, Isolation of the chicken thymidine kinase gene by plasmid rescue, Nature 285:207–210.PubMedCrossRefGoogle Scholar
  47. 47.
    Lowy, I., Pellicer, A., Jackson, I., Sim, O. K., Silverstein, S., and Axel, R., 1980, Isolation of transforming DNA: Cloning the hamster APRT gene, Cell 22:817–823.PubMedCrossRefGoogle Scholar
  48. 48.
    Goldfarb, M., Shimizu, K., Perucho, M., and Wigler, M., 1982, Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells, Nature 296:404–409.PubMedCrossRefGoogle Scholar
  49. 49.
    Gusella, J. F., Keys, C., Varsanyi-Breiner, A., Ikao, F. T., Jones, C., Puck, T. T., and Housman, D., 1980, Isolation and localization of DNA segments from specific human chromosomes, Proc. Natl. Acad. Sci. USA 77:2829–2833.PubMedCrossRefGoogle Scholar
  50. 50.
    Shih, C., and Weinberg, R. A., 1982, Isolation of a transforming sequence from a human bladder carcinoma cell line, Cell 29:161–169.PubMedCrossRefGoogle Scholar
  51. 51.
    Goubin, C., Goldman, D. S., Luce, J., Nieman, P. E., and Cooper, G. M., 1983, Molecular cloning and nucleotide sequence of a transforming gene detected by transfection of chicken B-cell lymphoma DNA, Nature 302:114–119.PubMedCrossRefGoogle Scholar
  52. 52.
    Hedrick, S. M., Cohen, D. I., Nielsen, E. A., and Davis, M. M., 1984, Isolation of cDNA clones encoding T cell-specific membrane-associated proteins, Nature 308:149–153.PubMedCrossRefGoogle Scholar
  53. 53.
    Alt, F. W., Kellems, R. E., Bertino, J. R., and Schimke, R. T. J., 1978, Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells, Biol. Chem. 253:1357–1369.Google Scholar
  54. 54.
    Lund, T., Grosveld, F. G., and Flavell, R. A., 1982, Isolation of transforming DNA by cosmid rescue, Proc. Natl. Acad. Sci. USA 79:520–524.PubMedCrossRefGoogle Scholar
  55. 55.
    Lau, Y.-F., and Kan, Y. W., 1984, Direct isolation of the functional human thymidine kinase gene with a cosmid shuttle vector, Proc. Natl. Acad. Sci. USA 81:414–418.PubMedCrossRefGoogle Scholar
  56. 56.
    Okayama, H., and Berg, P., 1983, A cDNA cloning vector that permits expression of cDNA inserts in mammalian cells, Mol. Cell. Biol. 1983:280–289.Google Scholar
  57. 57.
    Yokota, T., Lee, F., Rennick, D., Hall, C., Arai, N., Mosmann, T., Nabel, G., Cantor, H., and Arai, K., 1984, Isolation and characterization of a mouse cDNA clone that expresses mast-cell growth factor activity in monkey cells, Proc. Natl. Acad. Sci. USA 81:1070–1074.PubMedCrossRefGoogle Scholar
  58. 58.
    Schimke, R. T., 1984, Gene amplification in cultured animal cells, Cell 37:705–713.PubMedCrossRefGoogle Scholar
  59. 59.
    Stark, G. R., and Wahl, G. M., 1984, Gene amplification, Annu. Rev. Biochem. 53:447–491.PubMedCrossRefGoogle Scholar
  60. 60.
    Kavathas, P., and Herzenberg, L. A., 1983, Amplification of a gene coding for a human T cell differentiation antigen, Nature 306:385–387.PubMedCrossRefGoogle Scholar
  61. 61.
    Wahl, G. M., de Saint Vincent, B. R., and DeRose, M. L., 1984, Effect of chromosomal position on amplification of transfected genes in animal cells, Nature 307:516–520.PubMedCrossRefGoogle Scholar
  62. 62.
    Wigler, M., Perucho, M., Kurtz, D., Dana, S., Pellicer, A., Axel, R., and Silverstein, S., 1980, Transformation of mammalian cells with an amplifiable dominant-acting gene, Proc. Natl. Acad. Sci. USA 77:3567–3570.PubMedCrossRefGoogle Scholar
  63. 63.
    Christman, J. K., Gerber, M., Price, P. M., Flordellis, C., Edelman, J., and Acs, G., 1982, Amplification of expression of hepatitis B surface antigen in 3T3 cells cotransfected with a dominant-acting gene and cloned viral DNA, Proc. Natl. Acad. Sci. USA 79:1815–1819.PubMedCrossRefGoogle Scholar
  64. 64.
    Goodenow, R. S., McMillan, M., Orn, A., Nicolson, M., Davidson, M., Frelinger, J. A., and Hood, L., 1982, Identification of a BALB/c H-2Ld gene by DNA-mediated gene transfer, Science 215:677–679.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Paula Kavathas
    • 1
  1. 1.Department of Genetics, School of MedicineStanford UniversityStanfordUSA

Personalised recommendations