Advertisement

Designing and Using Site-Specific Antibodies to Synthetic Peptides

  • Brian S. Schaffhausen

Abstract

Over the past 4 years synthetic peptides have become widely used as “determinants in search of antibodies.” The production of antibodies to small peptides is now common laboratory practice. As with hybridoma technology, the method yields site-specific immunologic reagents. However, the isolation of a monoclonal against any particular determinant is a matter of chance. The identification of the determinant that is recognized by a given monoclonal is a laborious or even impossible task. By starting with a small peptide, the potential determinants are narrowly defined.

Keywords

Synthetic Peptide Tobacco Mosaic Virus Peptide Antibody Rous Sarcoma Virus Polyoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderer, F., 1963, Preparation and properties of an artificial antigen immunologically related to tobacco mosaic virus, Biochim. Biophys. Acta 71:246–248.PubMedCrossRefGoogle Scholar
  2. 2.
    Anderer, F., and Schlumberger, H., 1965, Properties of artificial antigens immunologically related to tobacco mosaic virus, Biochim. Biophys. Acta 97:503–509.PubMedCrossRefGoogle Scholar
  3. 3.
    Langbeheim, H., Arnon, R., and Sela, M., 1976, Antiviral effect of MS2 coliphage obtained with a synthetic antigen, Proc. Natl. Acad. Sci. USA 73:4636–4640.PubMedCrossRefGoogle Scholar
  4. 4.
    Fearney, F., Leung, C., Young, J. D., and Benjamini, E., 1971, The specificity of antibodies to a peptide determinant of TMV protein induced by immunization of the peptide conjugate, Biochim. Biophys. Acta 243:509–514.PubMedGoogle Scholar
  5. 5.
    Furie, B., Schechter, A., Sachs, D., and Anfinsen, C., 1974, Antibodies to the unfolded form of a helix rich region in staphylococcal nuclease, Biochemistry 13:1561–1566.PubMedCrossRefGoogle Scholar
  6. 6.
    Furie, B., Schechter, A., Sachs, D., and Anfinsen, C., 1975. An immunological approach to the conformational equilibrium of staphyloccocal nuclease, J. Mol. Biol. 92:497–506.PubMedCrossRefGoogle Scholar
  7. 7.
    Lau, H., Rosenberg, J., Beeler, D., and Rosenberg, R., 1979, The isolation and characterization of specific antibody population directed against prothrombin activation fragments F2 and F1,2*, J. Biol. Chem. 254:8751–8761.PubMedGoogle Scholar
  8. 8.
    Benjamin, D., Berzofsky, J., East, I., Gurd, F., Hannum, C., Leach, S., Margoliash, E., Michael, J., Miller, A., Prager, E., Reichlin, M., Sercarz, E., Smith-Gill, S., Todd, P., and Wilson, A., 1984, The antigenic structure of proteins: A reappraisal, Annu. Rev. Immunol. 2:67–101.PubMedCrossRefGoogle Scholar
  9. 9.
    Atassi, M., 1975, Antigenic structure of myoglobin: The complete immunochemical anatomy of a protein and conclusions relating to antigenic structures of proteins, Immunochemistry 12:423–438.PubMedCrossRefGoogle Scholar
  10. 10.
    Schechter, B., Schechter, I., Ramachandran, J., Conway-Jacobs, A., Sela, M., Benjamin, E., and Shimizu, M., 1971, Synthetic antigens with sequential and conformation-dependent determinants containing the same l-tyr-l-ala-l-glu sequence, Eur. J. Biochem. 20:309–320.PubMedCrossRefGoogle Scholar
  11. 11.
    Arnon, R., 1977, Immunochemistry of lysozyme, in: Immunochemistry of Enzymes and Their Antibodies (M. Salton, ed.), Wiley, New York, pp. 1–19.Google Scholar
  12. 12.
    Ibrahimi, I., Eder, J., Prager, E., Wilson, A., and Arnon, R., 1980, The effect of a single amino acid substitution on the antigenic specificity of the loop region of lysozome, Mol. Immunol. 17:37–46.PubMedCrossRefGoogle Scholar
  13. 13.
    Atassi, M., and Lee, C., 1978, The precise and entire antigenic structure of native lysozyme, Biochem. J. 171:429–434.PubMedGoogle Scholar
  14. 14.
    Green, N., Alexander, H., Olson, A., Alexander, S., Shinnick, T., Sutcliffe, J., and Lerner, R., 1982, Immunogenic structure of the influenza virus hemagglutinin, Cell 28:477–487.PubMedCrossRefGoogle Scholar
  15. 15.
    Wilson, I., Niman, H., Houghten, R., Cherenson, A., Connolly, M., and Lerner, R., 1984, The structure of an antigenic determinant in a protein, Cell 37:767–778.PubMedCrossRefGoogle Scholar
  16. 16.
    Lerner, R., 1982, Mapping the immunologic repertoire to produce antibodies of predetermined specificity, Nature 299:592–596.CrossRefGoogle Scholar
  17. 17.
    Sutcliffe, J., Shinnick, T., Green, N., and Lerner, R., 1983, Antibodies that react with predetermined sites on proteins, Science 219:660–666.PubMedCrossRefGoogle Scholar
  18. 18.
    Shinnick, T., Sutcliffe, J., Green, N., and Lerner, R., 1983, Synthetic peptide immunogens as vaccines, Annu. Rev. Microbiol. 37:425–446.PubMedCrossRefGoogle Scholar
  19. 19.
    Walter, G., and Doolittle, R., 1983, Antibodies against synthetic peptides, Genet. Eng. 5:61–91.Google Scholar
  20. 20.
    Papkoff, J., Lai, L., Hunter, T., and Verma, I., 1981, Analysis of transforming gene products from Moloney murine sarcoma virus, Cell 27:109–119.PubMedCrossRefGoogle Scholar
  21. 21.
    Papkoff, J., Verma, I., and Hunter, T., 1982, Detection of a transforming gene product in cells transformed by Moloney murine sarcoma virus, Cell 29:417–426.PubMedCrossRefGoogle Scholar
  22. 22.
    Robbins, K., Devare, S., Reddy, E., and Aaronson, S., 1982, In vivo identification of the transforming gene product of simian sarcoma virus, Science 218:1131–1133.PubMedCrossRefGoogle Scholar
  23. 23.
    Devare, S., Reddy, E., Law, J., Robbins, K., and Aaronson, S., 1983, Nucleotide sequence of the simian sarcoma virus genome: Demonstration that its acquired cellular sequences encode the transforming gene product p28sis, Proc. Natl. Acad. Sci. USA 80:731–735.PubMedCrossRefGoogle Scholar
  24. 24.
    Ooshika, I., Watanabe, Y., Meshi, T., Okada, Y., Igano, K., Inoue, K., and Yoshida, N., 1984, Identification of the 30K protein of TMV by immunoprecipitation with antibodies directed against a synthetic peptide, Virology 132:71–78.PubMedCrossRefGoogle Scholar
  25. 25.
    Hattori, S., Imagawa, K., Shimizu, F., Hashimura, E., Seiki, M., and Yoshida, M., 1983, Identification of envelope glycoprotein encoded by env gene of HTLV, Gann 74:790–793.PubMedGoogle Scholar
  26. 26.
    Hattori, S., Kiyokawa, T., Imagawa, K., Shimizu, F., Hashimura, E., Seiki, M., and Yoshida, M., 1984, Identification of gag and env products of HTLV, Virology 136:338–347.PubMedCrossRefGoogle Scholar
  27. 27.
    Slamon, D., Shimotohno, K., Cline, M., Golde, D., and Chen, I., 1984, Identification of the putative transforming protein of human T-cell leukemia viruses HTLV-I and HTLV-II, Science 226:61–64.PubMedCrossRefGoogle Scholar
  28. 28.
    Sutcliffe, J., Milner, J., Shinnick, T., and Bloom, F., 1983, Identifying the protein products of the brain-specific genes with antibodies to chemically synthesized peptides, Cell 33:671–682.PubMedCrossRefGoogle Scholar
  29. 29.
    Guiso, N., Dreyfus, M., Siffert, O., Danchin, A., Spyridakis, A., Gargouri, A., Claisse, M., and Slonimski, P., 1984, Antibodies against synthetic oligopeptides allow identification of the yeast mRNA-maturase encoded by the second intron of the yeast cob-box gene, EMBO J. 3:1769–1772.PubMedGoogle Scholar
  30. 30.
    Mariottini, P., Chomyn, A., Attardi, G., Trovato, D., Strong, D., and Doolittle, R., 1983, Antibodies against synthetic peptides reveal that the unidentified reading frame AGL, overlapping the ATPase 6 gene is expressed in human mitochondria, Cell 32:1269–1277.PubMedCrossRefGoogle Scholar
  31. 31.
    Bellini, W., Englund, G., Richardson, C., and Rozenblatt, S., 1984, Positive identification of a measles virus cDNA clone encoding a region of the phosphoprotein, J. Virol. 50:939–942.PubMedGoogle Scholar
  32. 32.
    Niman, H., 1984, Antisera to a synthetic peptide of the sis viral oncogene product recognize human platelet-derived growth factor, Nature 307:180–183.PubMedCrossRefGoogle Scholar
  33. 33.
    Sutcliffe, J., Shinnick, T., Green, N., Liu, F., Niman, H., and Lerner, R., 1980, Chemical synthesis of a polypeptide predicted from nucleotide sequence allows detection of a new retroviral gene product, Nature 287:801–805.PubMedCrossRefGoogle Scholar
  34. 34.
    Green, N., Shinnick, T., Witte, O., Ponticeli, A., Sutcliffe, J., and Lerner, R., 1981, Sequence-specific antibodies show that maturation of Moloney leukemia virus envelope polyprotein involves removal of a COOH-terminal peptide, Proc. Natl. Acad. Sci. USA 78:6023–6028.PubMedCrossRefGoogle Scholar
  35. 35.
    Boyle, W., Lipsick, J., Reddy, E., and Baluda, M., 1983, Identification of the leukemogenic protein of avian myeloblastosis virus and of its normal cellular homologue, Proc. Natl. Acad. Sci. USA 80:2834–2838.PubMedCrossRefGoogle Scholar
  36. 36.
    Hann, S., Abrams, H., Rohrschneider, L., and Eisenman, R., 1983. Proteins encoded by v-myc and c-myc oncogenes: Identification and localization in acute leukemia virus transformants and bursal lymphoma cell lines, Cell 34:789–798.PubMedCrossRefGoogle Scholar
  37. 37.
    Patschinsky, T., Walter, G., and Bister, K., 1984, Immunological analysis of v-myc gene products using antibodies against a myc-specific synthetic peptide, Virology 136:348–358.PubMedCrossRefGoogle Scholar
  38. 38.
    Baron, M., and Baltimore, D., 1983, Antibodies against the chemically synthesized genome-linked protein of poliovirus react with native virus-specific proteins, Cell 28:395–404.CrossRefGoogle Scholar
  39. 39.
    Semler, B., Anderson, C., Hanecak, R., Dorner, L., and Wimmer, E., 1982, A membrane-associated precursor to poliovirus VPg identified by immunoprecipitation with antibodies directed against a synthetic heptapeptide, Cell 28:405–412.PubMedCrossRefGoogle Scholar
  40. 40.
    Baron, M., and Baltimore, D., 1982, Antibodies against a synthetic peptide of the poliovirus replicase protein: Reaction with native, virus-encoded proteins and inhibition of virus-specific polymerase activities in vitro, J. Virol. 43:969–978.PubMedGoogle Scholar
  41. 41.
    Lahm, H., Gerber, L., Brink, L., Kilpatrick, D., and Udenfriend, S., 1983, Specific polyclonal antibodies to the carboxyl terminus of [Met] enkephalin-Arg6-Gly7-Leu8, Arch. Biochem. Biophys. 225:422–429.CrossRefGoogle Scholar
  42. 42.
    Robbins, K., Antoniades, H., Devare, S., Hunkapiller, M., and Aaronson, S., 1983, Structural and immunological similarities between simian sarcoma virus gene products and human platelet-derived growth factor, Nature 305:605–608.PubMedCrossRefGoogle Scholar
  43. 43.
    Feldman, L., and Nevins, J., 1983, Localization of the adenovirus E1Aa protein, a positiveacting transcriptional factor, in infected cells, Mol. Cell. Biol. 3:829–838.PubMedGoogle Scholar
  44. 44.
    Yee, S., Rowe, D., Tremblay, M., McDermott, M., and Branton, P., 1983, Identification of human adenovirus early region 1 products by using antisera against synthetic peptides corresponding to the predicted carboxyterminus, J. Virol 46:1003–1013.PubMedGoogle Scholar
  45. 45.
    Green, M., Brackmann, K., Lucher, L., and Symington, J., 1983, Antibodies to synthetic peptides of the transforming genes to human adenoviruses: An approach to understanding early viral gene function, Curr. Top. Microbiol. Immunol. 109:167–191.CrossRefGoogle Scholar
  46. 46.
    Lucher, L., Kimelman, D., Symington, J., Brackmann, K., Cartas, M., Thornton, H., and Green, M., 1984, Identification of Ad 12-encoded E1A tumor antigens synthesized in infected and transformed mammalian cells and in E. coli, J. Virol. 52:136–144.Google Scholar
  47. 47.
    Nigg, E., Sefton, B., Hunter, T., Walter, G., and Singer, J., 1982, Immunofluorescent localization of the transforming protein of Rous sarcoma virus with antibodies against a synthetic peptide, Proc. Natl. Acad. Sci. 79:5322–5326.PubMedCrossRefGoogle Scholar
  48. 48.
    Gentry, L., Rohrschneider, L., Casnellie, J., and Krebs, E., 1983, Antibodies to a defined region of pp60src neutralize the tyrosine-specific kinase activity, J. Biol. Chem. 258:11219–11228.PubMedGoogle Scholar
  49. 49.
    Gentry, L., and Rohrschneider, L., 1984, Common features of the yes and src gene products defined by peptide specific antibodies, J. Virol. 51:539–546.PubMedGoogle Scholar
  50. 50.
    Deppert, W., and Walter, G., 1982, Domains of simian virus 40 large T antigen exposed on the cell surface, Virology 122:56–70.PubMedCrossRefGoogle Scholar
  51. 51.
    Horan Hand, P., Wunderlich, T., Muraro, R., Caruso, A., and Schlom, J., 1984, Monoclonal antibodies of predefined specificity detect activated ras gene expression in human mammary and colon carcinomas, Proc. Natl. Acad. Sci. USA 81:5227–5231.CrossRefGoogle Scholar
  52. 52.
    Bulinski, J., Kumar, S., Titani, K., and Hauschka, S., 1984, Peptide antibody specific for the amino terminus of skeletal muscle actin, Proc. Natl. Acad. Sci. USA 80:1506–1510.CrossRefGoogle Scholar
  53. 53.
    Roop, D., Cheng, C., Titterington, L., Meyers, C., Stanley, J., Steinert, P., and Yuspa, S., 1984, Synthetic peptides corresponding to keratin subunits elicit highly specific antibodies, J. Biol. Chem. 259:8037–8040.PubMedGoogle Scholar
  54. 54.
    Muller, S., Himmelspach, K., and Van Regenmortel, M., 1982, Immunochemical localization of histone H3 at the surface of chromatin subunits, EMBO J. 1:939–944.PubMedGoogle Scholar
  55. 55.
    Muller, S., Soussanieh, A., Bouley, J., Reinbolt, J., and Van Regenmortel, M., 1983, Biochim. Biophys. Acta 747:100–106.PubMedCrossRefGoogle Scholar
  56. 56.
    Muller, S., Mazen, A., Martinage, A., and Van Regenmortel, M., 1984, Use of histone antibodies for studying chromatin topography and the phosphorylation of chromatin subunits, EMBO J. 3:2431–2436.PubMedGoogle Scholar
  57. 57.
    Sefton, B., and Walter, G., 1982, Antiserum for the carboxy terminus of the transforming protein of Rous sarcoma virus, J. Virol. 44:467–474.PubMedGoogle Scholar
  58. 58.
    Tamura, T., Bauer, H., Birr, C., and Pipkorn, R., 1983, Antibodies against synthetic peptides as a tool for functional analysis of the transforming protein pp60src, Cell 34:587–596.PubMedCrossRefGoogle Scholar
  59. 59.
    Church, W., Walker, L., Houghten, R., and Reisfeld, R., 1983, Anti-HLA antibodies of predetermined specificity: A chemically synthesized peptide induces antibodies specific for HLA-A,B heavy chain, Proc. Natl. Acad. Sci. USA 80:255–258.PubMedCrossRefGoogle Scholar
  60. 60.
    Paucha, E., Harvey, R., and Smith, A., 1984, Immunoprecipitation of some forms of SV40 large T antigen by antibodies to synthetic peptides, J. Virol. 51:670–681.PubMedGoogle Scholar
  61. 61.
    Schaffhausen, B., Benjamin, T., Pike, L., Casnellie, J., and Krebs, E., 1982, Antibody to the nonapeptide Glu-Glu-Glu-Glu-Tyr-Met-Pro-Met-Glu is specific for polyoma middle T antigen and inhibits in vitro kinase activity, J. Biol. Chem. 257:12467–12470.PubMedGoogle Scholar
  62. 62.
    Harvey, R., Oostra, B., Belsham, G., Gillett, P., and Smith, A., 1984, An antibody to a synthetic peptide recognizes polyomarvirus middle T antigen and reveals multiple in vitro tyrosine phosphorylation sites, Mol. Cell. Biol. 4:1334–1342.PubMedGoogle Scholar
  63. 63.
    Sen, S., Houghten, R., Sherr, C., and Sen, A., 1983, Antibodies of predetermined specificity detect two retroviral oncogene products and inhibit their kinase activities, Proc. Natl. Acad. Sci. USA 80:1246–1250.PubMedCrossRefGoogle Scholar
  64. 64.
    Konopka, J., Davis, R., Watanabe, S., Ponticelli, A., Schiffmaker, L., Rosenberg, N., and Witte, O., 1984, Only site directed antibodies reactive with the highly conserved src-homologous region of the v-abl protein neutralize kinase activity, J. Virol. 51:223–232.PubMedGoogle Scholar
  65. 65.
    Wong, T., and Goldberg, A., 1981, Synthetic peptide fragment of src gene product inhibits the src protein kinase and cross-reacts immunologically with avian onc kinases and cellular phosphoproteins, Proc. Natl. Acad. Sci. USA 78:7412–7416.PubMedCrossRefGoogle Scholar
  66. 66.
    Bunte, T., Donner, P., Pfaff, E., Reis, B., Greiser-Wilkie, I., Schaller, H., and Moelling, K., 1984, Inhibition of DNA binding of purified p55V-myc in vitro by antibodies against bacterially synthesized myc protein and a synthetic peptide, EMBO J. 3:1919–1924.PubMedGoogle Scholar
  67. 67.
    Beachey, E., Seyer, J., Dale, J., Simpson, A., and Kang, A., 1981, Type specific protective immunity evoked by synthetic peptide of S. pyogenes M, Nature 292:457–459.PubMedCrossRefGoogle Scholar
  68. 68.
    Audibert, F., Jolivet, M., Chedid, L., Alouf, J., Boquet, P., Rivaille, P., and Siffert, O., 1981, Active anti-toxic immunization by a synthetic diptheria toxin synthetic oligopeptide, Nature 289:593–594.PubMedCrossRefGoogle Scholar
  69. 69.
    Audibert, F., Jolivet, M., Chedid, L., Arnon, R., and Sela, M., 1982, Successful immunization with a totally synthetic diptheria vaccine, Proc. Natl. Acad. Sci. USA 79:5042–5046.PubMedCrossRefGoogle Scholar
  70. 70.
    Jacob, C., Sela, M., and Arnon, R., Antibodies against synthetic peptides of the B subunit of cholera toxin: cross-reaction and neutralization of toxin, Proc. Natl. Acad. Sci. USA 80:7611–7615.Google Scholar
  71. 71.
    Bittle, J., Houghton, R., Alexander, H., Shinnick, T., Sutcliffe, J., and Lerner, R., 1982, Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence, Nature 298:30–33.PubMedCrossRefGoogle Scholar
  72. 72.
    Pfaff, E., Mussgay, M., Bohm, H., Schulz, G., and Schaller, H., 1982, Antibodies against preselected peptides recognize and neutralize foot-and-mouth disease virus, EMBO J. 1:869–874.PubMedGoogle Scholar
  73. 73.
    Muller, G., Shapira, M., and Arnon, R., 1982, Anti-influenza response achieved by immunization with a synthetic conjugate, Proc. Natl. Acad. Sci. USA 79:569–573.PubMedCrossRefGoogle Scholar
  74. 74.
    Shapira, M., Jibson, M., Muller, G., and Arnon, R., 1984, Immunity and protection against influenza induced by synthetic peptide corresponding to antigenic sites of hemagglutinin, Proc. Natl. Acad. Sci. USA 81:2461–2465.PubMedCrossRefGoogle Scholar
  75. 75.
    Gerin, J., Alexander, H., Shih, J., Purcell, R., Dapolito, G., Engle, R., Green, N., Sutcliffe, J., Shinnick, T., and Lerner, R., 1983, Chemically synthesized peptides of hepatitis B surface antigen duplicate the d/y specificities and induce subtype specific antibodies in chimpanzees, Proc. Natl. Acad. Sci. USA 80:2365–2369.PubMedCrossRefGoogle Scholar
  76. 76.
    Emini, E., Jameson, B., and Wimmer, E., 1983, Priming for and induction of anti-poliovirus neutralizing antibodies by synthetic peptides, Nature 304:699–703.PubMedCrossRefGoogle Scholar
  77. 77.
    Walter, G., Hutchinson, M., Hunter, T., and Eckhart, W., 1982, Purification of polyoma virus medium T antigen by immunoaffinity chromatography, Proc. Natl. Acad. Sci. USA 79:4025–4029.PubMedCrossRefGoogle Scholar
  78. 78.
    Sue, J., and Sytkowski, A., 1983, Site-specific antibodies to human erythropoietin directed toward the NH2-region, Proc. Natl. Acad. Sci. USA 80:3651–3655.PubMedCrossRefGoogle Scholar
  79. 79.
    Sytkowski, A., and Sue, J., 1984, A novel radioimmunoassay for human erythropoietin using a synthetic NH2-terminal peptide and anti-peptide antibodies, J. Immunol. Meth. 69:181–186.CrossRefGoogle Scholar
  80. 80.
    Alexander, H., Johnson, D., Rosen, J., Jerabek, L., Green, N., Weissman, I., and Lerner, R., 1983, Mimicking the alloantigenicity of proteins with chemically synthesized peptides differing in single amino acids, Nature 306:697–699.PubMedCrossRefGoogle Scholar
  81. 81.
    Seiden, M., Clevinger, B., McMillan, S., Srouji, A., Lerner, R., and Davie, J., 1984, Chemical synthesis of idiotypes: Evidence that antisera to the same JH1 peptide detect multiple binding site-associated idiotypes, J. Exp. Med. 159:1338–1350.PubMedCrossRefGoogle Scholar
  82. 82.
    Chen, P., Fong, S., Normanseil, D., Houghten, R., Karras, J., Vaughan, J., and Carson, D., 1984, Delineation of a cross-reactive idiotype on human autoantibodies with an antibody against a synthetic peptide, J. Exp. Med. 159:1502–1511.PubMedCrossRefGoogle Scholar
  83. 83.
    Chen, P., Houghten, R., Fong, S., Rhodes, G., Gilbertson, T., Vaughan, J., Lerner, R., and Carson, D., 1984, Anti-hypervariable region antibody induced by a defined peptide: An approach for studying the structural correlates of idiotypes, Proc. Natl. Acad. Sci. USA 81:1784–1788.PubMedCrossRefGoogle Scholar
  84. 84.
    Hopp, T., and Woods, K., 1981, Prediction of protein antigenic determinants from amino acid sequences, Proc. Natl. Acad. Sci. USA 78:3824–3828.PubMedCrossRefGoogle Scholar
  85. 85.
    Hopp, T., and Woods, K., 1983, A computer program for predicting protein antigenic determinants, Mol. Immunol. 20:483–489.PubMedCrossRefGoogle Scholar
  86. 86.
    Kyte, J., and Doolittle, R., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157:105–132.PubMedCrossRefGoogle Scholar
  87. 87.
    Chou, P., and Fasman, C., 1978, Prediction of protein secondary structure, Adv. Enzymol. 47:251–276.Google Scholar
  88. 88.
    Bayer, H., Gruber, W., Schneider, J., and Hunsmann, G., 1984, Structural and immunological characterization of Friend murine leukemia virus glycopeptide using synthetic oligopeptides, EMBO J. 3:1925–1930.PubMedGoogle Scholar
  89. 89.
    Walter, G., Scheidtmann, K., Carbone, A., Laudano, A., and Doolittle, R., 1980, Antibodies specific for the carboxy- and amino-terminal regions of SV40 large T antigen, Proc. Natl. Acad. Sci. USA 77:5197–5200.PubMedCrossRefGoogle Scholar
  90. 90.
    Walter, G., Hutchinson, M., Hunter, T., and Eckhart, W., 1981, Antibodies specific for polyoma virus middle-sized tumor antigen, Proc. Natl. Acad. Sci. USA 79:4025–4029.CrossRefGoogle Scholar
  91. 91.
    Lerner, R., Green, N., Alexander, H., Liu, F., Sutcliffe, J., and Shinnick, T., 1981, Chemically synthesized peptides predicted from the nucleotide sequence of the hepatitis B virus genome elicit antibodies reactive with the native envelope protein of Dane particles, Proc. Natl. Acad. Sci. USA 78:3403–3407.PubMedCrossRefGoogle Scholar
  92. 92.
    Liu, F., Zinnecker, M., Hamaoka, T., and Katz, D., 1979, New procedures for preparation and isolation of conjugates of proteins and a synthetic copolymer of d amino acids and immunochemical characterization of such conjugates, Biochemistry 18:690–697.PubMedCrossRefGoogle Scholar
  93. 93.
    Dreesman, G., Sanchez, Y., Ionescu-Matiu, L, Sparrow, J., Six, H., Peterson, D., Hollinger, F., and Melnick, J., 1982, Antibody to hepatitis B surface antigen after a single inoculation of uncoupled synthetic peptide, Nature 295:158–160.PubMedCrossRefGoogle Scholar
  94. 94.
    Grandgenett, D., Knaus, R., and Hippenmeyer, P., 1983, Antibodies against a synthetic peptide of the avian retrovirus pp32 protein and the β DNA polymerase, Virology 130:257–262.PubMedCrossRefGoogle Scholar
  95. 95.
    Young, C., Schmitz, H., and Atassi, M., 1983, Antibodies with specificities to preselected protein regions evoked by free synthetic peptides representing protein antigenic sites or other surface locations: Demonstration with myoglobin, Mol. Immunol. 20:567–570.PubMedCrossRefGoogle Scholar
  96. 96.
    Schmitz, H., Atassi, H., and Atassi, M., 1983, Production of monoclonal antibodies with preselected submolecular binding specificities to protein determinants: Demonstration with sperm whale myoglobin, Mol. Immunol. 19:1699–1702.CrossRefGoogle Scholar
  97. 97.
    Schmitz, H., Atassi, H., and Atassi, M., 1983, Production of monoclonal antibodies with preselected submolecular binding specificities to protein antigenic sites: Antibodies to sperm whale myoglobin sites, Mol. Immunol. 20:719–726.PubMedCrossRefGoogle Scholar
  98. 98.
    Neurath, A., Kent, S., and Strick, N., 1984, Location and chemical synthesis of a pre-S gene coded immunodominant epitope of hepatitis B virus, Science 224:392–395.PubMedCrossRefGoogle Scholar
  99. 99.
    Jaffe, B., and Behrman, H. (eds), 1979, Methods of Hormone Radioimmunoassay, Academic Press, New York.Google Scholar
  100. 100.
    Kagan, A., and Glick, S., 1979, Oxytocin, in: Methods of Hormone Radioimmunoassay (B. Jaffe and H. Behrman, eds.), Academic Press, New York, pp. 327–339.Google Scholar
  101. 101.
    Peters, K., and Richards, F., 1977, Chemical cross-linking reagents and problems in studies of membrane structure, Annu. Rev. Biochem. 46:523–551.PubMedCrossRefGoogle Scholar
  102. 102.
    Bassiri, R., Dvorak, J., and Utiger, R., 1979, Thyrotropin-releasing hormone, in: Methods of Hormone Radioimmunoassay (B. Jaffe and H. Behrman, eds.), Academic Press, New York, pp. 45–56.Google Scholar
  103. 103.
    Neurath, A., Kent, S., and Strick, N., 1982, Specificity of antibodies elicited by a synthetic peptide having a sequence in common with a fragment of a virus protein, the hepatitis B surface antigen, Proc. Natl. Acad. Sci. USA 79:7871–7875.PubMedCrossRefGoogle Scholar
  104. 104.
    Kennedy, R., Sparrow, J., Sanchez, Y., Melnick, J., and Dreesman, G., 1984, Enhancement of viral hepatitis B antibody (anti-Hbs) response to a synthetic cycle peptide by priming with anti-idiotype antibodies, Virology 136:247–252.PubMedCrossRefGoogle Scholar
  105. 105.
    Niman, H., Houghten, R., Walker, L., Reisfeld, R., Wilson, I., Hogle, J., and Lerner, R., 1983, Generation of protein-reactive antibodies by short peptides is an event of high frequency: Implications for the structural basis of immune recognition, Proc. Natl. Acad. Sci. USA 80:4949–4953.PubMedCrossRefGoogle Scholar
  106. 106.
    Tamura, T., and Bauer, H., 1982, Monoclonal antibody against the C-terminal peptide of pp60src of Rous sarcoma virus, EMBO J. 1:1479–1485.PubMedGoogle Scholar
  107. 107.
    Schechter, B., Conway-Jacobs, A., and Sela, M., 1971, Conformational changes in a synthetic antigen induced by specific antibodies, Eur. J. Biochem. 20:321–324.PubMedCrossRefGoogle Scholar
  108. 108.
    Engval, E., and Perlman, P., 1972, Enzyme-linked immunosorbent assay, ELISA III. Quantitation of specific antibodies by enzyme labeled anti-immunoglobulin in antigen-coated tubes, J. Immunol. 109:129–135.Google Scholar
  109. 109.
    Voller, A., Bidwell, D., and Bartlett, A., 1976, Enzyme immunoassays in diagnostic medicine. Theory and practice, Bull. WHO 53:55–65.PubMedGoogle Scholar
  110. 110.
    Zweig, M., Showalter, S., Simms, D., and Hampar, B., 1984, Antibodies to a synthetic oligopeptide that reacts with herpes simplex virus type 1 and type 2 glycoprotein C, J. Virol. 51:430–436.PubMedGoogle Scholar
  111. 111.
    Walter, G., and Werchau, H., 1982, Cross-reactivity of antibodies against synthetic peptides, J. Cell Biochem. 19:119–125.PubMedCrossRefGoogle Scholar
  112. 112.
    Nigg, E., Walter, G., and Singer, S., 1982, On the nature of cross-reactions observed with antibodies directed against defined epitopes, Proc. Natl. Acad. Sci. USA 79:5939–5943.PubMedCrossRefGoogle Scholar
  113. 113.
    Ito, Y., Hamagishi, Y., Segawa, K., Dalianis, T., Appella, E., and Willingham, M., 1983, Antibodies against a nonapeptide of polyoma virus middle T antigen: Cross-reaction with a cellular protein(s), J. Virol. 48:709–720.PubMedGoogle Scholar
  114. 114.
    Crawford, L., Leppard, K., Lane, D., and Harlow, E., 1982, Cellular proteins reactive with monoclonal antibodies directed against SV40 large T, J. Virol. 42:612–620.PubMedGoogle Scholar
  115. 115.
    Schaffhausen, B., 1982, Transforming genes and gene products of polyoma and SV40, CRC Crit. Rev. Biochem. 13:215–286.PubMedCrossRefGoogle Scholar
  116. 116.
    Courtneidge, S., and Smith, A., 1983, Polyoma virus transforming protein associates with the product of the c-src cellular gene, Nature 303:435–439.PubMedCrossRefGoogle Scholar
  117. 117.
    Hunter, T., Hutchinson, M., and Eckhart, W., 1983, Polyoma middle T antigen can be phosphorylated at multiple sites in vitro, EMBO J. 3:73–80.Google Scholar
  118. 118.
    Carmichael, G., Schaffhausen, B., Dorsky, D., Oliver, D., and Benjamin, T., 1982, Carboxy terminus of polyoma middle-sized tumor antigen is required for attachment to membranes, associated protein kinase activities, and cell transformation, Proc. Natl. Acad. Sci. USA 79:3579–3583.PubMedCrossRefGoogle Scholar
  119. 119.
    Carmichael, G., Schaffhausen, B., Mandel, G., Liang, T., and Benjamin, T., 1984, Transformation by polyoma virus is drastically reduced by substitution of phenylalanine for tyrosine at residue 315 of middle-sized tumor antigen, Proc. Natl. Acad. Sci. USA 81:679–683.PubMedCrossRefGoogle Scholar
  120. 120.
    Harvey, R., Faulkes, R., Gillett, P., Lindsay, N., Paucha, E., Bradbury, A., and Smith, A., 1982, An antibody to a synthetic peptide that recognizes SV40 small-t antigen, EMBO J. 1:473–477.PubMedGoogle Scholar
  121. 121.
    Luka, J., Sternas, L., Jornvall, H., Klein, G., and Lerner, R., 1983, Antibodies of predetermined specificity for the NH2-terminus of a cellular p53 react with the native molecule: Evidence for the presence of different p53s, Proc. Natl. Acad. Sci. USA 80:1199–1203.PubMedCrossRefGoogle Scholar
  122. 122.
    Pacella, B., Hui, K., Haber, E., and Matsueda, G., 1983, Induction of fibrin-specific antibodies by immunization with synthetic peptides that correspond to amino termini of thrombin cleavage sites, Mol. Immunol. 20:521–527.PubMedCrossRefGoogle Scholar
  123. 123.
    Dillner, J., Sternas, L., Kallin, B., Alexander, H., Ehlin-Henriksson, B., Jorvall, H., Klein, G., and Lerner, R., 1984, Antibodies against a synthetic peptide identify the Epstein-Barr virus-determined nuclear antigen, Proc. Natl. Acad. Sci. USA 81:4652–4656.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Brian S. Schaffhausen
    • 1
  1. 1.Department of Biochemistry and Pharmacology, School of MedicineTufts UniversityBostonUSA

Personalised recommendations