Production of Rat × Mouse Hybridomas for the Study of the Nicotinic Acetylcholine Receptor

  • Susan M. Hochschwender
  • Lorene K. Langeberg
  • Douglas W. Schneider
  • Jon M. Lindstrom

Abstract

In this chapter we will discuss methods used in our laboratory for the production of monoclonal antibodies (MAbs) to acetylcholine receptors (AChRs) and their use in obtaining information on AChR structure, function, and synthesis, the autoimmune response to AChR, and the identification of putative AChRs in neurons. Space limitations preclude extensive discussion and referencing of work done in other laboratories in this field.

Keywords

Agarose Sodium Chloride Glycol Electrophoresis Sulfuric Acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cold Spring Harbor Symposia on Quantitative Biology, 1983, Volume XLVIII, Cold Spring Harbor, New York.Google Scholar
  2. 2.
    Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T., and Numa, S., 1983, Structural homology of Torpedo caii/ornica acetylcholine receptor subunits, Nature 302:528–532.PubMedCrossRefGoogle Scholar
  3. 3.
    Claudio, T., Ballivet, M., Patrick, J., and Heinemann, S., 1983, Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor γ subunit, Proc. Natl. Acad. Sci. USA 80:1111–1115.PubMedCrossRefGoogle Scholar
  4. 4.
    Devillers-Thiery, A., Giraudat, J., Bentaboulet, M., and Changeux, J.-P., 1983, Complete mRNA coding sequence of the acetylcholine binding a-subunit of Torpedo marmorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain, Proc. Natl. Acad. Sci. USA 80:2067–2071.PubMedCrossRefGoogle Scholar
  5. 5.
    Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shimizu, S., Kikyotani, S., Kayano, T., Hirose, T., Inayama, S., and Numa, S., 1983, Cloning and sequence analysis of calf cDNA and human genomic DNA encoding a-subunit precursor of muscle acetylcholine receptor, Nature 305:818–823.PubMedCrossRefGoogle Scholar
  6. 6.
    Karlin, A., 1980, Molecular properties of nicotinic acetylcholine receptors, in: The Cell Surface and Neuronal Function (G. Poste, G. Nicolson, and C. Cotman, eds.), Elsevier/North-Holland Biomedical Press, New York, pp. 191–260.Google Scholar
  7. 7.
    Lindstrom, J., 1984, Immunobiology of Myasthenia gravis, experimental autoimmune myasthenia gravis and Lambert-Eaton syndrome, Annu. Rev. Immunol. 3:111–133.Google Scholar
  8. 8.
    Dwyer, D. S., Kearney, J. F., Bradley, R. J., Kemp, G. E., and Oh, S. J., 1981, Interaction of human antibody and murine monoclonal antibody with muscle acetylcholine receptor, Ann. N.Y. Acad. Sci. 377:143–157.PubMedCrossRefGoogle Scholar
  9. 9.
    Gomez, C., Richman, D., Berman, P., Burres, S., Arnason, B., and Fitch, F., 1979. Monoclonal antibodies against purified nicotinic acetylcholine receptors, Biochem. Biophys. Res. Commun. 88:575–582.PubMedCrossRefGoogle Scholar
  10. 10.
    Lennon, V. A., and Lambert, E. H., 1980, Myasthenia gravis induced by monoclonal antibodies to acetylcholine receptors, Nature 285:238–240.PubMedCrossRefGoogle Scholar
  11. 11.
    Mochly-Rosen, D., Fuchs, S., and Eshhar, Z., 1979, Monoclonal antibodies against defined determinants of acetylcholine receptors, FEBS Lett. 106:389–392.CrossRefGoogle Scholar
  12. 12.
    Froehner, S. C., Douville, K., Klink, S., and Culp, W. J., 1983, Monoclonal antibodies to cytoplasmic domains of the acetylcholine receptor, J. Biol. Chem. 258:7112–7120.PubMedGoogle Scholar
  13. 13.
    Tzartos, S. J., and Lindstrom, J. M., 1980, Monoclonal antibodies used to probe acetylcholine receptor structure: Localization of the main immunogenic region and detection of similarities between subunits, Proc. Natl. Acad. Sci. USA 77:755–759.PubMedCrossRefGoogle Scholar
  14. 14.
    Tzartos, S. J., Rand, D. E., Einarson, B. L., and Lindstrom, J. M., 1981, Mapping of surface structures of Electrophorus acetylcholine receptor using monoclonal antibodies, J. Biol. Chem. 256:8635–8645.PubMedGoogle Scholar
  15. 15.
    Walters, D., and Maelicke, A., 1983, Organization of ligand binding sites at the acetylcholine receptor: A study with monoclonal antibodies, Biochemistry 22:1811–1819.CrossRefGoogle Scholar
  16. 16.
    Kamo, I., Furakawa, S., Tada, A., Mano, Y., Iwasaki, Y., Furuse, T., Ito, N., Hayashi, K., and Satoyoshi, E., 1982, Monoclonal antibody to acetylcholine receptor: Cell line established from thymus of patient with myasthenia gravis, Science 215:995–997.PubMedCrossRefGoogle Scholar
  17. 17.
    Vernet Der Garabedian, B., and Morel, E., 1983, Monoclonal antibodies against the human acetylcholine receptor, Biochem. Biophys. Res. Commun. 113:1–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Tzartos, S., Langeberg, L., Hochschwender, S., and Lindstrom, J., 1983, Demonstration of a main immunogenic region on acetylcholine receptors from human muscle using monoclonal antibodies to human receptor, FEBS Lett. 158:116–118.PubMedCrossRefGoogle Scholar
  19. 19.
    Tzartos, S., and Lindstrom, J., 1981, Production and characterization of monoclonal antibodies for use as probes of acetylcholine receptors, in: Monoclonal Antibodies in Endocrine Research (R. Fellows and G. Eisenbarth, eds.), Raven Press, New York, pp. 69–86.Google Scholar
  20. 20.
    Gullick, W. J., and Lindstrom, J., 1983, Mapping the binding of monoclonal antibodies to the acetylcholine receptor from Torpedo californica, Biochemistry 22:3312–3320.CrossRefGoogle Scholar
  21. 21.
    Lindstrom, J., Criado, M., Hochschwender, S., Fox, J. L., and Sarin, V., 1984, Immunochemical tests of acetylcholine receptor subunit models, Nature 311:573–575.PubMedCrossRefGoogle Scholar
  22. 22.
    Lindstrom, J., Einarson, B., and Tzartos, S., 1981, Production and assay of antibodies to acetylcholine receptors, Meth. Enzymol. 74:432–460.PubMedCrossRefGoogle Scholar
  23. 23.
    Lindstrom, J., Merlie, J., and Yogeeswaran, G., 1979, Biochemical properties of acetylcholine receptor subunits from Torpedo californica, Biochemistry 18:4465–4470.PubMedCrossRefGoogle Scholar
  24. 24.
    Ratnam, M., and Lindstrom, J,. 1984, Structural features of the nicotinic acetylcholine receptor revealed by antibodies to synthetic peptides, Biochem. Biophys. Res. Commun. 122:1225–1233.PubMedCrossRefGoogle Scholar
  25. 25.
    Hyman, R., Ralph, P., and Sarkar, S., 1972, Cell-specific antigens and immunoglobulin synthesis of murine myeloma cells and their variants, J. Natl. Cancer Inst. 48:173–184.PubMedGoogle Scholar
  26. 26.
    Köhler, G., Howe, S. C., and Milstein, C., 1976, Fusion between immunoglobulin-secreting and nonsecreting myeloma cell lines, Eur. J. Immunol. 6:292–295.PubMedCrossRefGoogle Scholar
  27. 27.
    Galfrè, G., Milstein, C., and Wright, B., 1979, Rat x rat hybrid myelomas and a monoclonal anti-Fd portion of mouse IgG, Nature 277:131–133.PubMedCrossRefGoogle Scholar
  28. 28.
    Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256:495–497.PubMedCrossRefGoogle Scholar
  29. 29.
    Civin, C. I., and Banquerigo, M. L., 1983, Rapid, efficient cloning of murine hybridoma cells in low gelation temperature agarose, J. Immunol. Meth. 61:1–8.CrossRefGoogle Scholar
  30. 30.
    Fazekas de St., Groth, S., and Scheidegger, D., 1980, Production of monoclonal antibodies: Strategy and tactics, J. Immunol. Meth. 35:1–21.CrossRefGoogle Scholar
  31. 31.
    Mendelson, E., and Bustin, M., 1984, Monoclonal antibodies against distinct determinants of histone HS bind to chromatin, Biochemistry 23:3459–3466.PubMedCrossRefGoogle Scholar
  32. 32.
    Djavadi-Ohaniance, L., Friguet, B., and Goldberg, M. E., 1984, Structural and functional influence of enzyme-antibody interactions: Effects of eight different monoclonal antibodies on the enzymatic activity of Escherichia coli tryptophan synthase, Biochemistry 23:97–104.PubMedCrossRefGoogle Scholar
  33. 33.
    Harper, J. R., and Orengo, A., 1981, The preparation of an immunoglobulin-amylglucosidase conjugate and its quantitation by an enzyme-cycling assay, J. Immunol. Meth. 113:51–57.Google Scholar
  34. 34.
    Johnson, R. B., and Nakamura, R. M., 1980, Improved techniques in ELISA for viruses and IgG and IgM-type viral antibodies, in: Immunoassays: Clinical Laboratory Techniques for the 1980s (R. M. Nakamura, W. R. Dito, and E. S. Tucker III, eds.), Alan Liss, New York, pp. 141–156.Google Scholar
  35. 35.
    Lanier, L. L., Gutman, G. A., Lewis, D. E., Griswold, S. T., and Warner, N. L., 1982, Monoclonal antibodies against rat immunoglobulin kappa chains, Hybridoma 1:125–131.PubMedCrossRefGoogle Scholar
  36. 36.
    Chang, T. H., Steplewski, Z., and Koprowski, H., 1980, Production of monoclonal antibodies in serum free medium, J. Immunol. Meth. 39:369–375.CrossRefGoogle Scholar
  37. 37.
    Kawamoto, T., Sato, J. D., Le, A., McClure, D. B., and Sato, G. H., 1983, Development of a serum-free medium for growth of NS-1 mouse myeloma cells and its application to the isolation of NS-1 hybridomas, Anal. Biochem. 130:445–453.PubMedCrossRefGoogle Scholar
  38. 38.
    Fazekas de St., Groth, S., 1983, Automated production of monoclonal antibodies in a cytostat, J. Immunol. Meth. 57:121–136.CrossRefGoogle Scholar
  39. 39.
    Cleveland, W. L., Wood, I., and Erlanger, B. F., 1983, Routine large-scale production of monoclonal antibodies in a protein-free culture medium, J. Immunol. Meth. 56:221–234.CrossRefGoogle Scholar
  40. 40.
    Bruck, C., Portetelle, D., Glineur, C., and Bollen, A., 1982, One-step purification of mouse monoclonal antibodies from ascitic fluid by DEAE Affigel blue chromatography, J. Immunol. Meth. 53:313–319.CrossRefGoogle Scholar
  41. 41.
    Mohammad, S. F., Sharma, N., and Woodward, S. C., 1983, Disulfide linking of albumin to the hinge region of immunoglobin G in normal human serum, Biochim. Biophys. Acta 749:47–51.PubMedCrossRefGoogle Scholar
  42. 42.
    Mage, M., 1980, Preparation of Fab fragments from IgGs of different animal species, Meth. Enzymol. 70:142–150.PubMedCrossRefGoogle Scholar
  43. 43.
    Rousseaux, J., Biserte, G., and Bazin, H., 1980, The differential enzyme sensitivity of rat immunoglobulin G subclasses to papain and pepsin, Mol. Immunol. 17:469–482.PubMedCrossRefGoogle Scholar
  44. 44.
    Rousseaux, J., Rousseaux-Prevost, R., Bazin, H., and Biserte, G., 1983, Proteolysis of rat IgG subclasses by Staphylococcus aureus V8 proteinase, Biochim. Biophys. Acta 748:205–212.PubMedCrossRefGoogle Scholar
  45. 45.
    Bazin, H., Beckers, A., and Querinjean, P., 1974, Three classes and four (sub)classes of rat immunoglobulins: IgM, IgA, IgE, and IgGl, IgG2a, IgG2b, IgG2c, Eur. J. Immunol. 4:44–48.PubMedCrossRefGoogle Scholar
  46. 46.
    Medgyesi, G. A., Fust, C., Gergely, J., and Bazin, H., 1978, Classes and subclasses of rat immunoglobulins: Interaction with the complement system and with staphylococcal protein A, Immunochemistry 15:125–129.PubMedCrossRefGoogle Scholar
  47. 47.
    Conti-Tronconi, B., Tzartos, S., and Lindstrom, J., 1981, Monoclonal antibodies as probes of acetylcholine receptor structure. 2. Binding to native receptor, Biochemistry 20:2181–2191.PubMedCrossRefGoogle Scholar
  48. 48.
    Lindstrom, J., 1984, Nicotinic acetylcholine receptors: Use of monoclonal antibodies to study synthesis, structure, function, and autoimmune response in: Receptor Biochemistry and Methodology, Volume IV (J. C. Venter, C. M. Frazer, and J. M. Lindstrom, eds.), Alan R. Liss, New York, pp. 21–57.Google Scholar
  49. 49.
    Lindstrom, J., 1983, Using monoclonal antibodies to study acetylcholine receptors and myasthenia gravis, Neurosci. Commentary 1:139–156.Google Scholar
  50. 50.
    Lindstrom J., Tzartos, S., Gullick, W., Hochschwender, S., Swanson, L., Sargent, P., Jacob, M., and Montai, M., 1983, Use of monoclonal antibodies to study acetylcholine receptors from electric organs, muscle, and brain and the autoimmune response to receptor in myasthenia gravis, Cold Spring Harbor Symp. Quant. Biol. XLVIII:89–99.CrossRefGoogle Scholar
  51. 51.
    Sargent, P. B., Hedges, B. E., Tsaveler, L., Clemmons, L., Tzartos, S., and Lindstrom, J. M,. 1984, Structure and transmembrane nature of the acetylcholine receptor in amphibian skeletal muscle as revealed by cross-reacting monoclonal antibodies, J. Cell Biol. 98:609–618.PubMedCrossRefGoogle Scholar
  52. 52.
    Tzartos, S. J., Seybold, M. E., and Lindstrom, J. M., 1982, Specificities of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies, Proc. Natl. Acad. Sci. USA 79:188–192.PubMedCrossRefGoogle Scholar
  53. 53.
    Fairclough, R. H., Finer-Moore, J., Love, R. A., Kristofferson, D., Desmeules, P. J., and Stroud, R. M., 1983, Subunit organization and structure of an acetylcholine receptor, Cold Spring Harbor Symp. Quant. Biol. XLVIII:9–20.CrossRefGoogle Scholar
  54. 54.
    Anderson, D., Blobel, G., Tzartos, S., Gullick, W., and Lindstrom, J., 1983, Transmembrane orientation of an early biosynthetic form of acetylcholine receptor δ subunit determined by proteolytic dissection in conjunction with monoclonal antibodies, J. Neurosci. 3:1773–1784.PubMedGoogle Scholar
  55. 55.
    Hopp, T. P., and Woods, K. R., 1981, Prediction of protein antigenic determinants from amino acid sequences, Proc. Natl. Acad. Sci. USA 78:3824–3828.PubMedCrossRefGoogle Scholar
  56. 56.
    Juillerat, M. A., Barkas, T., and Tzartos, S. J., 1984, Antigenic sites of the nicotinic acetylcholine receptor cannot be predicted from the hydrophilicity profile, FEBS Lett. 168:143–148PubMedCrossRefGoogle Scholar
  57. 57.
    Guy, R., 1983, A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations, Biophys. J. 45:249–261.CrossRefGoogle Scholar
  58. 58.
    Finer-Moore, J., and Stroud, R., 1984, Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor, Proc. Natl. Acad. Sci. USA 81:155–159.PubMedCrossRefGoogle Scholar
  59. 59.
    Lindstrom, J., Tzartos, S., and Gullick, B., 1982, Structure and function of acetylcholine receptors studied using monoclonal antibodies, Ann. N.Y. Acad. Sci. 377:1–19CrossRefGoogle Scholar
  60. 60.
    Merlie, J. P., and Lindstrom, J., 1983, Assembly in vivo of mouse muscle acetylcholine receptor: Identification of an α subunit species that may be an assembly intermediate, Cell 34:747–757.PubMedCrossRefGoogle Scholar
  61. 61.
    Merlie, J. P., Sebbane, R., Gardner, S., Olson, E., and Lindstrom, J., 1983, The regulation of acetylcholine receptor expression in mammalian muscle, Cold Spring Harbor Symp. Quant. Biol. XLVIII:135–146.CrossRefGoogle Scholar
  62. 62.
    Sebbane, R., Clokey, G., Merlie, J. P., Tzartos, S., and Lindstrom, J., 1983, Characterization of the mRNA for mouse muscle acetylcholine receptor a subunit by quantitative translation in vitro, J. Biol. Chem. 258:3294–3303.PubMedGoogle Scholar
  63. 63.
    Merlie, J. P., Sebbane, R., Gardner, S., and Lindstrom, J., 1983, cDNA clone for the a subunit of the acetylcholine receptor from the mouse muscle cell line BC3H-1, Proc. Natl. Acad. Sci. USA 80:3845–3849.PubMedCrossRefGoogle Scholar
  64. 64.
    Gullick, W. J., and Lindstrom, J. M., 1983, Comparison of the subunit structure of acetylcholine receptors from muscle and electric organ of Electrophorus electricus, Biochemistry 22:3801–3807.CrossRefGoogle Scholar
  65. 65.
    Marshall, L., 1981, Synaptic localization of a bungarotoxin binding which blocks nicotinic transmission at frog sympathetic neurons, Proc. Natl. Acad. Sci. USA 78:1948–1952.PubMedCrossRefGoogle Scholar
  66. 66.
    Patrick, J., and Stallcup, B., 1977, α Bungarotoxin binding and cholinergic receptor function on a rat sympathetic nerve line, J. Biol. Chem. 252:8629–8633.PubMedGoogle Scholar
  67. 67.
    Carbonetto, S. T., Fambrough, D. M., and Muller, K. F., 1978, Nonequivalence of α bungarotoxin receptors and acetylcholine receptors in chick sympathetic neurons, Proc. Natl. Acad. Sci. USA 75:1016–1020.PubMedCrossRefGoogle Scholar
  68. 68.
    Jacob, M., and Berg, D., 1983, The ultrastructural localization of a bungarotoxin binding sites in relation to synapsis on chick ciliary ganglion neurons, J. Neurosci. 3:260–271.PubMedGoogle Scholar
  69. 69.
    Jacob, M. H., Berg, D. K., and Lindstrom, J. M., 1984, Shared antigenic determinant between the EJectrophorus acetylcholine receptor and a synaptic component on chicken ciliary ganglion neurons, Proc. Natl. Acad. Sci. USA 81:3223–3227.PubMedCrossRefGoogle Scholar
  70. 70.
    Swanson, L., Lindstrom, J., Tzartos, S., Schmued, L., O’Leary, D., and Cowan, W., 1983, Im-munohistochemical localization of monoclonal antibodies to the nicotinic acetylcholine receptor in the midbrain of the chick, Proc. Natl. Acad. Sci. 80:4532–4536.PubMedCrossRefGoogle Scholar
  71. 71.
    Fuchs, S., Bartfeld, D., Mochly-Rosen, D., Souroujon, M., and Feingold, C., 1981, Acetylcholine receptor: Molecular dissection and monoclonal antibodies in the study of experimental myasthenia, Ann. N. Y. Acad. Sci. 377:110–124.PubMedCrossRefGoogle Scholar
  72. 72.
    Wan, K., and Lindstrom, J., 1985, Effects of monoclonal antibodies on the functions of purified acetylcholine receptor from Torpedo californica reconstituted into liposomes, Biochemistry, In press.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Susan M. Hochschwender
    • 1
  • Lorene K. Langeberg
    • 1
  • Douglas W. Schneider
    • 1
  • Jon M. Lindstrom
    • 1
  1. 1.Recepter Biology LaboratorySalk InstituteSan DiegoUSA

Personalised recommendations