Appreciation of the role played by dopamine (DA) in brain function has undergone rapid change in recent years (Andén, 1979). Upon its discovery in brain in 1939, DA was proposed to act as an intermediate in the biosynthesis of norepinephrine and epinephrine. However, in 1958 DA was demonstrated to be present in brain in concentrations similar to that of norepinephrine, suggesting that DA not only serves as a precursor but might function as a neurotransmitter in its own right. When it was discovered that the striatum contained 70–80% of the brain’s DA and that depletion of striatal DA was important in the pathogenesis of Parkinson’s disease (Hornykiewicz, 1973), DA rapidly became the subject of intense interest among neuropharmacologists. The study of DA and other catecholamines was aided tremendously by the discovery that catecholamine systems could be visualized microscopically through the use of fluorescence histochemical techniques. This permitted the precise anatomical localization of dopaminergic neurons and fibers and, when combined with biochemical data, unequivocally demonstrated the existence of a dopamine-containing neuronal population distinct from other catecholamine systems. The development of the histochemical fluorescence technique was also crucial to the neurophysiological analysis of brain DA systems, which relies upon knowledge of the anatomical location of these neurons and their projection areas.


Substantia Nigra Carotid Body Intracellular Recording Horizontal Cell Interspike Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alander, A., Anden, N.-E., and Grabowska-Anden, N. S., 1980,Metoclopramide and sulpiride as selective blocking agents of pre-and postsynaptic dopamine neurons, Naunyn Schmiedebergs Arch Pharmacol. 312:145–150.Google Scholar
  2. Andén, N. E., 1979,Historical introduction, in: The Neurobiology of Dopamine (A. S. Horn, J. Korf, and B. H. C. Westerink, eds.), Academic Press, London, pp. 1–7.Google Scholar
  3. Aghajanian, G. K., and Bunney, B. S., 1977,Dopamine “autoreceptors”: Pharmacological characterization by microiontophoretic single unit recording studies, Nauyn Schmiedebergs Arch Pharmacol. 297:1–7.Google Scholar
  4. Arbuthnott, G. W., 1976,Supersensitivity of dopamine receptors, in: Biochemistry and Neu-rology (P. Bradford and C. D. Marsden, eds.), Academic Press, London, pp. 27–34.Google Scholar
  5. Ashe, J. H., and Libet, B., 1981,Modulation of slow postsynaptic potentials by dopamine in rabbit sympathetic ganglion, Brain Res. 217:93–106.Google Scholar
  6. Bannon, M. J., Reinhard, J. F., Bunney, E. B., and Roth, R. H., 1982, Mesocortical dopamine neurons: Unique response to antipsychotic drugs explained by the absence of terminal autoreceptors, Nature 296: 444–446.Google Scholar
  7. Benardo, L. S., and Prince, D. A., 1982a, Dopamine action on hippocampal pyramidal cells, J. Neurosci. 2: 415–423.Google Scholar
  8. Benardo, L. S., and Prince, D. A., 1982b, Dopamine modulates a Cat’-activated postassium conductance in mammalian hippocampal pyramidal cells, Nature 297: 76–79.PubMedCrossRefGoogle Scholar
  9. Berger, B., Thierry, A. M., Tassin, J. P., and Moyne, M. A., 1976, Dopaminergic innervation of the rat prefrontal cortex: A fluorescence histochemical study, Brain Res. 106: 133–145.Google Scholar
  10. Bergstrom, D. A., and Walters, J. R., 1984, Dopamine attenuates the effects of GABA on single unit activity in the globus pallidus, Brain Res. 310: 23–33.Google Scholar
  11. Bernardi, G., Marciani, M. G., Morocutti, C., Pavone, F., and Stanzione, P., 1978, The actions of dopamine on rat caudate neurons recorded intracellularly, Neurosci. Lett. 8: 235–240.Google Scholar
  12. Bernardi, G., Cherubini, E., Marciani, M. G., Mercuri, N., and Stanzione, P., 1982, Responses of intracellularly recorded cortical neurons to the iontophoretic application of dopamine, Brain Res. 245: 267–274.Google Scholar
  13. Biscoe, T. J., and Straughan, D. W., 1966, Micro-electrophoretic studies on neurons in the cat hippocampus, J. Physiol. (Lond.) 183: 341–359.Google Scholar
  14. Bolme, P., Fuxe, K., Hökfelt, T., and Goldstein, M., 1977, Studies on the role of dopamine in cardiovascular and respiratory control; central versus peripheral mechanisms, Adv. Biochem. Psychopharmacol. 16: 281–290.Google Scholar
  15. Bunney, B.S., and Aghajanian, G. K., 1976, Dopamine and norepinephrine innervated cells in the rat prefrontal cortex: Pharmacological differentiation using microiontophoretic techniques, Life Sci. 19: 1783–1792.Google Scholar
  16. Bunney, B. S., and Grace, A. A., 1978, Acute and chronic haloperidol treatment: Comparison of effects on nigral dopaminergic cell activity, Life Sci. 23: 1715–1728.Google Scholar
  17. Bunney, B. S., Walters, J. R., Roth, R. H., and Aghajanian, G. K., 1973, Dopaminergic neurons: Effect of antipsychotic drugs and amphetamine on single cell activity, J. Pharmacol. Exp. Ther. 185: 560–571.Google Scholar
  18. Carlsson, A., 1975, Dopaminergic autoreceptors, in: Chemical Tools in Catecholamine Research, Vol. II (O. Almgren, A. Carlsson, and J. Engel, eds.), North-Holland, Amsterdam, pp. 219–225.Google Scholar
  19. Chiodo, L. A., and Bunney, B. S., 1983, Electrophysiological studies on EMD 23 448 (an indole-2-butylamine) in the rat: A putative selective dopamine autoreceptor agonist, Neurophar-macology 22: 1087–1093.Google Scholar
  20. Chiodo, L. A., Bannon, M. J., Grace, A. A., Roth, R. H., and Bunney, B. S., 1984, Absense of autoreceptors on a subpopulation of mesocortical dopamine neurons: Electrophysiological and biochemical evidence, Neuroscience 12: 1–16.Google Scholar
  21. Cohen, J. L., and Dowling, J. E., 1983, The role of the retinal interplexiform cell: effects of 6-hydroxydopamine on the spatial properties of carp horizontal cells, Brain Res. 264:307–310.Google Scholar
  22. Cooper, J. R., Bloom, F. E., and Roth, R. H., 1982, The Biochemical Basis of Neuropharmacology, Third Edition, Oxford University Press, New York, pp. 1–327.Google Scholar
  23. Dahlström, A., and Fuxe, K., 1964, Evidence for the existence of monoamine-containing neurons in the central nervous system, Acta Physiol. Scand. [Suppl.] 232: 1–55.Google Scholar
  24. Docherty, R. J., and McQueen, D. S., 1978, Inhibitory action of dopamine on cat carotid chemoreceptors. J. Physiol. ( Lond. ) 279: 425–436.Google Scholar
  25. Dowling, J. E., and Ehringer, B., 1978, The interplexiform cell system. I. Synapses of the do- paminergic neurons of the goldfish retina, Proc. R. Soc. Lond. B. 201:7–26.Google Scholar
  26. Dowling, J. E., Lasater, E. M., Van Buskirk, R., and Watling, K., 1983, Pharmacological properties of isolated fish horizontal cells. Vision Res. 23: 421–432.PubMedCrossRefGoogle Scholar
  27. Eccles, J C., 1943, Synaptic potentials and transmission in sympathetic ganglion, J. Physiol. (Loud.) 101:465–483.Google Scholar
  28. Eyzaguirre, C., and Fidone, S. J., 1980, Transduction mechanisms in carotid body: Glomus cells, putative neurotransmitters, and nerve endings, Am. J. Physiol. 239: C135 — C153.PubMedGoogle Scholar
  29. Feltz, P., and DeChamplain, J., 1972, Enhanced sensitivity of caudate neurons to microionto-phoretic injections of dopamine in 6-hydroxydopamine treated cats, Brain Res. 43: 601–605.PubMedCrossRefGoogle Scholar
  30. Filion, M., 1979, Effects of interruption of the nigrostriatal pathway and of dopaminergic agents on the spontaneous activity of globus pallidus neurons in the awake monkey, Brain Res. 178: 425–441.PubMedCrossRefGoogle Scholar
  31. Fonnum, F., Gottesfield, A., and Grofova, I., 1978, Distribution of glutamate decarboxylase, choline acetyltransferase and aromatic amino decarboxylase in the basal ganglia of normal and operated rats. Evidence for striatopallidal, striatoentopeduncular and striatonigral GABAergic fibers, Brain Res. 143: 125–128.PubMedCrossRefGoogle Scholar
  32. Freed, W. J., Perlow, M. J., Karoum, F., Seiger, A., Olson, L., Hoffer, B. J., and Wyatt, R. J., 1980, Restoration of dopaminergic function by grafting of fetal rat substantia nigra to the caudate nucleus. Long-term behavioral, biochemical and histochemical studies, Ann. Neurol. 8: 510–519.Google Scholar
  33. Freedman, J. E., Gould, R. J., and Snyder, S. H., 1983, Neuroleptics exhibit noncompetitive effects at dopamine receptors, Neurosci. Abst. 9: 32.Google Scholar
  34. Gallagher, J. P., Inokuchi, H., and Shinnick-Gallagher, P., 1980, Dopamine depolarization of mammalian primary afferent neurons, Nature 283: 770–772.PubMedCrossRefGoogle Scholar
  35. Gallego, A., 1971, Horizontal and amacrine cells in the mammal’s retina, Vision Res. ( Suppl. ) 3: 33–50.Google Scholar
  36. Geffen, L. B., Jessel, T. M., Cuello, A. C., and Iversen, L. L., 1976, Release of dopamine from dendrites in rat substantia nigra, Nature 260: 258–260.PubMedCrossRefGoogle Scholar
  37. Ginsborg, B. L., House, C. R., and Mitchell, M. R., 1980, On the role of calcium in the electrical responses of cockroach salivary gland cells to dopamine, J. Physiol. ( Lond. ) 303: 325–335.Google Scholar
  38. Gospe, S. M., Jr., and Wilson, W. A., Jr., 1981, Pharmacological studies of a novel dopamine-sensitive receptor mediating burst-firing inhibition of neurosecretory cell R15 in Aplysia California, J. Pharmacol. Exp. Ther. 216: 368–377.Google Scholar
  39. Grace, A. A., and Bunney, B. S., 1979, Paradoxical GABA excitation of nigral dopaminergic cells: Indirect mediation through reticulata inhibitory neurons, Eur. J. Pharmacol. 59: 211–218.Google Scholar
  40. Grace, A. A., and Bunney, B. S., 1980, Nigral dopamine neurons: Intracellular recording and identification using L-DOPA injection combined with fluorescence histochemistry, Science 210: 654–656.Google Scholar
  41. Grace, A. A., and Bunney, B. S., 1983a, Intracellular and extracellular electrophysiology of nigral dopaminergic neurons. I. Identification and characterization, Neuroscience 10: 301–315.Google Scholar
  42. Grace, A. A., and Bunney, B. S., 19836, Intracellular and extracellular electrophysiology of nigral dopaminergic neurons. II. Action potential generating mechanisms and morphological correlates. Neuroscience 10: 317–331.Google Scholar
  43. Grace, A. A., and Bunney, B. S., 1983c, Intracellular and extracellular electrophysiology of nigral dopaminergic neurons. III. Evidence for electrical coupling, Neuroscience 10: 333–348.Google Scholar
  44. Grace, A. A., and Bunney, B. S., 1983d, Single spiking and burst firing in nigral dopamine neurons, Soc. Neurosci. 9: 1006.Google Scholar
  45. Grace, A. A., and Bunney, B. S., 1984a, Nigral dopaminergic neurons—extracellular and intracellular electrophysiological characteristics, in: Proceedings of the 5th International Catecholamine Symposium ( E. Usdin, A. Carlsson, A. Dalkström, and J. Engle, eds.), Alan R. Liss, New York, pp. 323–332.Google Scholar
  46. Grace, A. A., and Bunney, B. S., 19846, The control of firing pattern in nigral dopamine neurons: Single spike firing, J. Neuroscience 4: 2866–2876.Google Scholar
  47. Grace, A. A., and Bunney, B. S., 1984c, The control of firing pattern in nigral dopamine neurons: Burst firing, J. Neuroscience 4: 2877–2890.Google Scholar
  48. Grace, A. A., and Bunney, B. S., 1985a, Opposing effects of striatonigral feedback pathways on midbrain dopamine cell activity, Brain Res. (in press).Google Scholar
  49. Grace, A. A., and Bunney, B. S., 1985b, Low doses of apomorphine elicit two opposing influences on dopamine cell electrophysiology, Brain Res. (in press).Google Scholar
  50. Groves, P. M., Wilson, C. J., Young, S. J., and Rebec, G. V., 1975, Self-inhibition by dopaminergic neurons, Science 190: 522–529.PubMedCrossRefGoogle Scholar
  51. Guyenet, P. G., and Aghajanian, G. K., 1978, Antidromic identification of dopaminergic and other output neurons of the rat substantia nigra, Brain Res. 150: 69–84.PubMedCrossRefGoogle Scholar
  52. Guyenet, P. G., and Crane, J. K., 1981, Non-dopaminergic nigrostriatal pathway, Brain Res. 213: 291–305.PubMedCrossRefGoogle Scholar
  53. Hedden, W. L., and Dowling, J. E., 1978, The interplexiform cell system. II. Effects of dopamine on goldfish retinal neurons, Proc. R. Soc. Lond. B 201: 27–55.Google Scholar
  54. Herrling, P. L., 1981, The membrane potential of cat hippocampal neurons recorded in vivo displays four different reaction-mechanisms to iontophoretically applied transmitter ago-fists, Brain Res. 212: 331–343.PubMedCrossRefGoogle Scholar
  55. Herrling, P. L., and Hull, C. D., 1980, Iontophoretically applied dopamine depolarizes and hyperpolarizes the membrane of cat caudate neurons, Brain Res. 192: 441–462.Google Scholar
  56. Hornykiewicz, O., 1973, Parkinson’s disease: From brain homogenate to treatment, Fed. Proc. 32: 183–190.PubMedGoogle Scholar
  57. Hull, C. D., Levine, M. S., Buchwald, N. A., Heller, A., and Browning, R. A., 1974, The spontaneous firing pattern of forebrain neurons. I. The effects of dopamine and non-dopamine depleting lesions on caudate unit firing patterns, Brain Res. 73: 241–262.Google Scholar
  58. Johnston, D., Hablitz, J. J., and Wilson, W. A., 1980, Voltage clamp discloses slow inward current in hippocampal burst-firing neurones, Nature 286: 391–393.PubMedCrossRefGoogle Scholar
  59. Juraska, J. M., Wilson, C. J., and Groves, P. M., 1977, The substantia nigra of the rat: A golgi study, J. Comp. Neurol. 172: 585–600.PubMedCrossRefGoogle Scholar
  60. Karasawa, N., Kondo, Y., and Nagatsu, I., 1982, Immunohistochemical and immunofluorescent localization of catecholamine-synthesizing enzymes in the carotid body of the bat and dog, Arch. Histol. Jpn. 45: 429–435.Google Scholar
  61. Kebabian, J. W., and Calne, D. B., 1979, Multiple receptors for dopamine, Nature 277: 93–96.PubMedCrossRefGoogle Scholar
  62. Kitai, S. T., 1982, Electrophysiology of the corpus striatum and brain stem integrating systems, in: Handbook of Physiology, The Nervous System II, ( S. R. Geiger, ed.), Williams & Wilkins, Baltimore, Maryland, pp. 997–1015.Google Scholar
  63. Kitai, S. T., Sugimori, M., and Kocsis, J. D., 1976, Excitatory nature of dopamine in the nigrocaudate pathway, Exp. Brain Res. 24: 351–363.PubMedGoogle Scholar
  64. Korf, J., Zieleman, M., and Westerink, B. H. C., 1976, Dopamine release in the substantia nigra, Nature 260: 257–258.PubMedCrossRefGoogle Scholar
  65. Krnjevic, K., and Phillis, J. W., 1963, Actions of certain amines on cerebral cortical neurons, Br. J. Pharmacol. 70: 471–490.Google Scholar
  66. Kuhar, M. J., Murrin, L. C., Malouf, A. T., and Klemm, K., 1978, Dopamine receptor binding in vivo: The feasibility of autoradiographic studies, Life Sci. 22: 203–210.Google Scholar
  67. Libet, B., 1970, Generation of slow inhibitory and excitatory postsynaptic potentials, Fed. Proc. 29: 1943–1956.Google Scholar
  68. Libet, B., and Tosaka, T., 1970, Dopamine as a sympathetic transmitter and modulator in sympathetic ganglia: A different mode of synaptic action, Proc. Natl. Acad. Sci. 67: 667–673.Google Scholar
  69. Lindvall, O., and Björklund, A., 1978, Organization of catecholamine neurons in the rat central nervous system, in: Handbook of Psychopharmacolgy, Vol. 9 ( L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Plenum Press, New York, pp. 139–231.Google Scholar
  70. Lindvall, O., and Björklund, A., 1979, Dopaminergic innervation of the globus pallidus by collaterals form the nigrostriatal pathway, Brain Res. 172: 169–173.PubMedCrossRefGoogle Scholar
  71. Llados, F., and Zapata, P., 1978a, Effects of dopamine analogues and antagonists on carotid body chemoreceptors in situ, J. Physiol. ( Land. ) 274: 487–499.Google Scholar
  72. Llados, F., and Zapata, P., 1978b, Effects of adrenoceptor stimulating and blocking agents on carotid body chemosensory inhibition, J. Physiol. ( Lond. ) 274: 501–509.Google Scholar
  73. Matsumoto, S., Nakajima, T., Uchida, T., Ozawa, H., and Ushiyama, J., 1982, Effects of sodium cyanide, dopamine and acetylcholine on the resting membrane potential of glomus cells in the rabbit, Brain Res. 239: 674–678.Google Scholar
  74. Meech, R. W., 1978, Calcium-dependent potassium activation in nervous tissues. Anna. Rev. Biophys. Bioeng. 7: 1–18.Google Scholar
  75. Moore, K. E., and Demarest, K. T., 1982, Tuberoinfundibular and tuberohypophyseal dopaminergic neurons, in: Frontiers in Neuroendocrinology, Vol. 7 ( W. F. Ganong and L. Martini, eds.), Raven Press, New York, pp. 161–190.Google Scholar
  76. Moore, R. Y., and Bloom, F. E., 1978, Central catecholamine neuron systems: Anatomy and physiology of the dopamine systems, Annu. Rev. Neurosci. 2: 129–169.Google Scholar
  77. Nieoullon, A., Cheramy, A., and Glowinski, J., 1977, Release of dopamine in vivo from cat substantia nigra, Nature 266: 375–377.PubMedCrossRefGoogle Scholar
  78. Norcross, K., and Spehlmann, R., 1978, A quantitative analysis of the excitatory and depressant effects of dopamine on the firing of caudatal neurons: Electrophysiological support for the existence of two distinct dopamine-sensitive receptors. Brain Res. 156: 168–174.PubMedCrossRefGoogle Scholar
  79. Ohye, C., Bouchard, R., Boucher, R., and Poirieer, L. J., 1970, Spontaneous activity of the putamen after chronic interruption of the dopaminergic pathways. Effects of L-DOPA, J. Pharmacol. Exp. Ther. 175: 700–708.Google Scholar
  80. Palacios, J. M., Niehoff, D. L., and Kuhar, M. J., 1981, 3H-Spiperone binding sites in brain: Autoradiographic localization of multiple receptors, Brain Res. 213: 277–289.Google Scholar
  81. Palmer, M., and Hoffer, B., 1980, Catecholamine modulation of enkephalin-induced electrophysiological responses in cerebral cortex, J. Pharmacol. Exp. Ther. 213: 205–215.Google Scholar
  82. Palmer, M. R., Sieger, A., Hoffer, B. J., and Olson, L., 1983, Modulatory interactions between enkephalin and catecholamines: Anatomical and physiological substrates, Fed. Proc. 42: 2934–2945.Google Scholar
  83. Perlow, M. J., Freed, W. J., Hoffer, B. J., Seiger, A., Olson, L., and Wyatt, R. J., 1979, Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system, Science 204: 643–647.PubMedCrossRefGoogle Scholar
  84. Phillis, J. W., and Kirkpatrick, J. R., 1979, Action of biogenic amines on the isolated toad spinal cord, Gen. Pharmacol. 10: 115–119.Google Scholar
  85. Piccolino, M., Neyton, J., Whitkovsky, P., and Gerschenfeld, H. M., 1982, gamma-Aminobutyric acid antagonists decrease junctional communication between L-horizontal cells of the retina, Proc. Natl. Acad. Sci. LISA 79: 3671–3675.Google Scholar
  86. Price, J., and Mudge, A. W., 1983, A subpopulation of rat dorsal root ganglion neurons is catecholaminergic, Nature 301: 241–243.PubMedCrossRefGoogle Scholar
  87. Redgrave, P., and Mitchell, I., 1982, Functional validation of projection topography in the nigrostriatal dopamine system, Neuroscience 7: 885–894.PubMedCrossRefGoogle Scholar
  88. Ruffieux, A., and Schultz, W., 1980, Dopaminergic activation of reticulata neurones in the substantia nigra, Nature 285: 240–241.PubMedCrossRefGoogle Scholar
  89. Sanghera, M. K., Trulson, M. E., and German, D. C., 1983, In vitro electrophysiological and pharmacological properties of midbrain dopamine neurons in the mouse, Soc. Neurosci. Abst. 9: 1005.Google Scholar
  90. Scatton, B., Simon, H., LeMoal, M., and Bischoff, S., 1980, Origin of dopaminergic innervation of the rat hippocampal formation, Neurosci. Lett. 18: 125–131.Google Scholar
  91. Schultz, W., and Ungerstedt, U., 1978a, Striatal cell supersensitivity to apomorphine in dopamine-lesioned rats correlated to behavior, Neuropharmacology 17: 349–353.PubMedCrossRefGoogle Scholar
  92. Schultz, W., and Ungerstedt, U., 1978b, Short-term increase and long-term reversion of striatal cell activity after degeneration of the nigrostriatal dopamine system, Exp. Brain Res. 33: 159–171.Google Scholar
  93. Seeman, P., 1980, Brain dopamine receptors, Pharmacol. Rev. 32: 229–313.Google Scholar
  94. Segal, M., and Bloom, F. E., 1974, Norepinephrine in the rat hippocampus. I. Iontophoretic studies, Brain Res. 72: 79–97.Google Scholar
  95. Shellenberger, M. K., Young, D. N., and Levine, M. S., 1977, Effects of intracerebroventricular L-DOPA on caudate unit firing, Brain Res. Bull. 2: 273–277.CrossRefGoogle Scholar
  96. Siggins, G. R., Hoffer, B. J., Bloom, F. E., and Ungerstedt, U., 1976, Cytochemical and electrophysiological studies of dopamine in the caudate nucleus, in: The Basal Ganglia ( M. D. Yahr, ed.), Raven Press, New York, pp. 227–248.Google Scholar
  97. Skirboll, L. R., and Bunney, B. S., 1979, The effects of acute and chronic haloperidol treatment on spontaneously firing neurons in the caudate nucleus of the rat, Life Sci. 25: 1419–1434.PubMedCrossRefGoogle Scholar
  98. Skirboll, L. R., Grace, A. A., and Bunney, B. S., 1979, Dopamine auto-and postsynaptic receptors: Electrophysiological evidence for differential sensitivity to dopamine agonists, Science 206: 80–82.Google Scholar
  99. Steg, G., 1969, Striatal cell activity during systemic administration of monoaminergic and cholinergic drugs, in: Third Symposium on Parkinson Disease (F. Gillingham and I. Donaldson, eds.), Livingstone, Edinberg, pp. 26–29.Google Scholar
  100. Teranishi, T., Negishi, K., and Kato, S., 1983, Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina, Nature 301: 243–246.PubMedCrossRefGoogle Scholar
  101. Thierry, A. M., Tassin, J. P., Blanc, G., and Glowinski, J., 1978, Studies on mesocortical dopamine systems, in: Advances in Biochemical Psychopharmacology, Vol. 19 (P. J. Roberts, G. N. Woodruff, and L. L. Iversen, eds.), Raven Press, New York, pp. 205–216.Google Scholar
  102. Tosaka, T., and Libet, B., 1970, Additional (adrenergic) synaptic step in sympathetic ganglia, Fed Proc. 29: 716.Google Scholar
  103. Ungerstedt, U., Ljungberg, T., Hoffer, B., and Siggins, G., 1978, Dopaminergic supersensitivity in the striatum, in: Advances in Neurology, Vol. 9, Dopaminergic Mechanisms ( D. B. Caine, T. N. Chase, and A. Barbeau, eds.), Raven Press, New York, pp. 57–65.Google Scholar
  104. Wagner, H. N., Burns, H. D., Daniels, R. F., Wong, D. F., Langstrom, B., Duefler, T., Frost, J. J., Ravert, H. T., Links, J. M., Rosenbloom, S. B., Lukas, S. E., Kramer, A. V., and Kuhar, M. J., 1983, Imaging dopamine receptors in the human brain by positron tomography, Science 221: 1264–1266.PubMedCrossRefGoogle Scholar
  105. Waszczak, B. L., and Walters, J. R., 1983, Dopamine modulation of the effects of gamma- aminobutyric acid on substantia nigra pars reticulata neurons, Science 220: 218–223.CrossRefGoogle Scholar
  106. Watling, K. J., and Dowling, J. E., 1981, Dopaminergic mechanisms in the teleost retina. I. Dopamine-sensitive adenylate cyclase in homogenates of carp retina; effects of agonists, antagonists and ergots, J. Neurochem. 36: 559–568.Google Scholar
  107. Wilson, C. J., Young, S. J., and Groves, P. M., 1977, Statistical properties of neuronal spike trains in the substantia nigra: Cell types and their interactions, Brain Res. 136: 243–260.PubMedCrossRefGoogle Scholar
  108. Wilson, C. J., Chang, H. T., and Kitai, S. T., 1982, Origin of postsynaptic potentials evoked in identified rat neostriatal neurons by stimulation in substantia nigra, Exp. Brain Res. 45: 157–167.PubMedCrossRefGoogle Scholar
  109. Wilson, W. A., and Wachtel, H., 1978, Prolonged inhibition in burst firing neurons: synaptic inactivation of the slow regenerative inward current, Science 202: 772–775.PubMedCrossRefGoogle Scholar
  110. Wuerthele, S. M., Freed, W. J., Olson, L., Morihisa, J., Spoor, L., Wyatt, R. J., and Hoffer, B. J., 1980, Effects of dopamine agonists and antagonists on the electrical activity of substantia nigra neurons transplanted into the lateral ventricle of the rat, Exp. Brain Res. 44: 1010.Google Scholar
  111. Yarbrough, G. G., Lake, N., and Phillis, J. W., 1974, Calcium antagonism and its effects on the inhibitory actions of biogenic amines on cerebral cortical neurons, Brain Res. 67: 77–88.PubMedCrossRefGoogle Scholar
  112. Zapata, P., 1975, Effects of dopamine on carotid chemo-and baroreceptors in vitro, J. Physiol. ( Lund. ) 244: 235–251.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Anthony A. Grace
  • Benjamin S. Bunney

There are no affiliations available

Personalised recommendations