The discovery of the biological importance of norepinephrine (NE) is inextricably tied to the development of the concept of chemical neurotransmission which took place in the 1920s and 1930s. The key figures in the genesis of this revolutionary idea were Loewi, who demonstrated that a substance similar to epinephrine was responsible for the acceleration of the heartbeat produced by sympathetic nerve stimulation, and Cannon, who established that an epinephrinelike substance is the chemical mediator liberated by sympathetic nerve impulses at neuroeffector junctions. Von Euler subsequently identified the substance in question as norepinephrine.


Dorsal Horn Locus Coeruleus Superior Cervical Ganglion Purkinje Neuron Intracellular Recording 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, P. R., and Lancaster, B., 1985, Components of Ca-activated K current in rat hippocampal neurones in vitro, J. Physiol. (Lond.) 362: 23 P.Google Scholar
  2. Aghajanian, G. K., 1985, Modulation of a transient outward current in serotonergic neurones by a1-adrenoceptors, Nature 315: 501–503.PubMedGoogle Scholar
  3. Aghajanian, G. K., and Cedarbaum, J. M., 1977, Evidence for norepinephrine-mediated collateral inhibition of locus coeruleus neurons, Brain Res. 136: 570–577.PubMedGoogle Scholar
  4. Aghajanian, G. K., and Rogawski, M. A., 1983, The physiological role of a-adrenoceptors in the CNS: New concepts from single-cell studies, Trends Pharmacol. Sci., 4: 315–317.Google Scholar
  5. Aghajanian, G. K., and VanderMaelen, C. P., 1982, a2-Adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: Intracellular studies in vivo, Science 215: 1394–1396.Google Scholar
  6. Aghajanian, G. K., VanderMaelen, C. P., and Andrade, R., 1983, Intracellular studies on the role of calcium in regulating the activity and reactivity of locus coeruleus neurons in vivo, Brain Res. 273: 237–243.PubMedGoogle Scholar
  7. Ahlquist, R. P., 1948, A study of adrenotropic receptors, Am J. Physiol. 153: 586–600.PubMedGoogle Scholar
  8. Andrade, R., and Aghajanian, G. K., 1982, Single cell activity in the noradrenergic A-5 region: Responses to drugs and peripheral manipulations of blood pressure, Brain Res. 242: 123–135.Google Scholar
  9. Andrade, R., and Aghajanian, G. K., 1984a, Locus coeruleus activity in vitro: Intrinsic regulation by a calcium-dependent potassium conductance but not a2-adrenoceptors, J. Neurosci. 4: 161–170.PubMedGoogle Scholar
  10. Andrade, R., and Aghajanian, G. K., 1984b, Intrinsic regulation of locus coeruleus neurons: Electrophysiological evidence indicating a predominant role for autoinhibition, Brain Res. 310: 401–406.PubMedGoogle Scholar
  11. Armstrong-James, M., and Fox, K., 1983, Effects of ionophoresed noradrenaline on the spontaneous activity of neurones in rat primary somatosensory cortex, J. Physiol. (Lond.) 335: 427–447.Google Scholar
  12. Assaf, S. Y., Mason, S. T., and Miller, J. J., 1979, Noradrenergic modulation of neuronal transmission between the entorhinal cortex and the dentate gyrus of the rat, J. Physiol. (Lond.) 292: 52 P.Google Scholar
  13. Baraban, J. M., and Aghajanian, G. K., 1980, Suppression of firing activity of 5-HT neurons in the dorsal raphe by alpha-adrenoceptor antagonists, Neuropharmacology 19: 355–363.PubMedGoogle Scholar
  14. Baraban, J. M., and Aghajanian, G. K., 1981, Noradrenergic innervation of serotonergic neurons in the dorsal raphe: Demonstration by electron microscopic autoradiography, Brain Res. 204: 1–11.PubMedGoogle Scholar
  15. Barasi, S., and Roberts, M. H. T., 1977, Responses of motoneurons to electrophoretically applied dopamine, Br. J. Pharmacol. 60: 29–34.PubMedGoogle Scholar
  16. Barger, G., and Dale, H. H., 1910, Chemical structure and sympathomimetic action of amines, J. Physiol. (Lond.) 41: 19–59.Google Scholar
  17. Basile, A. S., and Dunwiddie, T. V., 1984, Norepinephrine elicits both excitatory and inhibitory responses from Purkinje cells in the vitro rat cerebellar slice, Brain Res. 296: 15–25.PubMedGoogle Scholar
  18. Belcher, G., Ryall, R. W., and Schaffner, R., 1978, The differential effects of 5-hydroxytryptamine, noradrenaline and raphe stimulation on nociceptive and non-nociceptive dorsal horn interneurones in the cat, Brain Res. 151: 307–321.PubMedGoogle Scholar
  19. Bliss, T. V. P., Goddard, G. V., and Riives, 1983, Reduction of long-term potentiation in the dentate gyrus of the rat following selective depletion of monoamines, J. Physiol. (Lond.) 334: 475–491.Google Scholar
  20. Bloom, F. E., Costa, E., and Salmoiraghi, G. C., 1964, Analysis of individual rabbit olfactory bulb neuron responses to the microiontopohresis of acetylcholine, norepinephrine and serotonin synergists and antagonists, J. Pharmacol. Exp. Ther. 146: 16–23.PubMedGoogle Scholar
  21. Brown, D. A., and Caulfield, M. P., 1979, Hyperpolarizing’a2’-adrenoceptors in rat sympathetic ganglia, Br. J. Pharmacol. 65: 435–445.PubMedGoogle Scholar
  22. Brown, D. A., and Caulfield, M. P., 1981, Adrenoceptors in ganglia, in: Adrenoceptors and Catecholamine Action ( G. Kunos, ed.), John Wiley and Sons, New York, pp. 99–115.Google Scholar
  23. Brown, D. A., and Dunn, P. M., 1983, Depolarization of rat isolated superior cervical ganglia mediated by ß2-adrenoceptors, Br. J. Pharmacol. 79: 429–439.PubMedGoogle Scholar
  24. Burnstock, G., and Costa, M., 1975, Adrenergic Neurons, Chapman and Hall, London. Canfield, D. R., and Dunlap, K., 1984, Pharmacological characterization of amine receptors on embryonic chick sensory neurons, Br. J. Pharmac. 82: 557–563.Google Scholar
  25. Cedarbaum, J. M., and Aghajanian, G. K., 1977, Catecholamine receptors on locus coeruleus neurons: Pharmacological characterization, Eur. J. Pharmacol. 44: 375–385.PubMedGoogle Scholar
  26. Cedarbaum, J. M., and Aghajanian, G. K., 1978, Activation of locus coeruleus neurons by peripheral stimuli: Modulation by a collateral inhibitory mechanism, Life Sci. 23: 1383–1392.PubMedGoogle Scholar
  27. Christ, D. D., and Nishi, S., 1971, Site of adrenaline blockade in the superior cervical ganglion of the rabbit, J. Physiol. (Lund.) 213: 107–117.Google Scholar
  28. Cole, A. E., and Shinnick-Gallagher, P., 1981, Comparison of the receptors mediating the catecholamine hyperpolarization and slow inhibitory postsynaptic potential in sympathetic ganglia, J. Pharmacol. Exp. Ther. 217: 440–444.PubMedGoogle Scholar
  29. Dahl, D., Bailey, W. H., and Winson, J., 1983, Effect of norepinephrine depletion of hippocampus on neuronal transmission from perforant pathway through dentate gyrus, J. Neurophysiol. 49: 123–133.PubMedGoogle Scholar
  30. Dahlström, A., and Fuxe, K., 1964, Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons, Acta Physiol. Scand. 62 (Suppl. 232): 1–55.Google Scholar
  31. Dale, H. H., 1906, On some physiological actions of ergot, J. Physiol. (Land.) 34: 163–206.Google Scholar
  32. Day, T. A., and Renaud, L. P., 1984, Electrophysiological evidence that noradrenergic afferents selectively facilitate the activity of supraoptic vasopressin neurons, Brain Res. 303: 233–240.PubMedGoogle Scholar
  33. De Groat, W. C., and Volle, R. L., 1966, The actions of the catecholamines on transmission in the superior cervical ganglion of the cat, J. Pharmacol. Exp. Ther. 154: 1–13.PubMedGoogle Scholar
  34. Doxey, J. C., Roach, A. G., and Smith. C. F. C., 1983, Studies on RX 781094: A selective, potent and specific antagonist of az-adrenoceptors, Br. J. Pharmacol. 78: 489–505.PubMedGoogle Scholar
  35. Doxey, J. C., Lane, A. C., Roach, A. G., and Virdee, N. K., 1984, Comparison of the a-adrenoceptor antagonist profiles of idazoxan (RX 781094), yohimbine, rauwolscine and corynanthine, Naunyn-Schmiedeberg’s Arch. Pharmacol. 325: 136–144.Google Scholar
  36. Drew, G. M., 1978, Pharamcological characterization of the presynaptic a-adrenoceptors reg- ulating cholinergic activity in the guinea-pig ileum, Br. J. Pharmacol. 64: 293–300.PubMedGoogle Scholar
  37. Dunlap, K., and Fischbach, G. D., 1981, Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones, J. Physiol. (Land.) 317: 519–535.Google Scholar
  38. Egan, T. M., Henderson, G., North, R. A., and Williams, J. T., 1983, Noradrenaline-mediated synaptic inhibition in rat locus coeruleus neurones, J. Physiol. (Lond.) 345: 477–488.Google Scholar
  39. Engberg, I., Flatman, J. A., and Kadzielawa, K., 1976, Lack of specificity of motoneurone responses to microiontophoretically applied phenolic amines, Acta Physiol. Scand. 96: 137–139.PubMedGoogle Scholar
  40. Engberg, I., and Marshall, K. C., 1971, Mechanism of noradrenaline hyperpolarization in spinal cord motoneurons of the cat, Acta Physiol. Scand. 83: 142–144.PubMedGoogle Scholar
  41. Finlayson, P. G. and Marshall, K. C., 1984, Hyperpolarizing and age-dependent depolarizing responses of cultured locus coeruleus neurons to noradrenaline, Develop. Brain Res. 15: 167–175.Google Scholar
  42. Fleetwood-Walker, S. M., Mitchell, R., Hope, P. J., Molony, V., and Iggo, A., 1985, An az receptor mediates the selective inhibition by noradrenaline of nociceptive responses of identified dorsal horn neurones, Brain Res. 334: 243–254.PubMedGoogle Scholar
  43. Foote, S. L., Aston-Jones, G., and Bloom, F. E., 1980, Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal, Proc. Natl. Acad. Sci. U.S.A. 77: 3033–3037.PubMedGoogle Scholar
  44. Foote, S. L., Bloom, F. E., Aston-Jones, G., 1983, Nucleus locus ceruleus: New evidence of anatomical and physiological specificity, Physiol. Rev. 63: 844–914.PubMedGoogle Scholar
  45. Foote, S. L., Freedman, R., and Oliver, A. P., 1975, Effects of putative neurotransmitters on neuronal activity in monkey auditory cortex, Brian Res. 86: 229–242.Google Scholar
  46. Frankhuyzen, A. L., and Mulder, A. H., 1982, Pharmacological characterization of presynaptic a-adrenoceptors modulating [3H]noradrenaline and [3H]5-hydroxytryptamine release from slices of the hippocampus of the rat, Eur. J. Pharmacol. 81: 97–106.PubMedGoogle Scholar
  47. Freedman, J. E. and Aghajanian, G. K., 1984, Idazoxan (RX 781094) selectively antagonizes a2adrenoceptors on rat central neurons, Eur. J. Pharmac. 105: 265–272.Google Scholar
  48. Freedman, R., Hoffer, B. J., Woodward, D. J., and Puro, D., 1977, Interaction of norepinephrine with cerebellar activity evoked by mossy and climbing fibers, Exp. Neurol. 55: 269–288.PubMedGoogle Scholar
  49. Fung, S. J., and Barnes, C. D., 1981, Evidence of facilitatory coerulospinal action in lumbar motoneurons of cats, Brain Res. 216: 299–311.PubMedGoogle Scholar
  50. Galvan, M., and Adams, P. R., 1982, Control of calcium current in rat sympathetic neurons by norepinephrine, Brain Res. 244: 135–144.PubMedGoogle Scholar
  51. Gershon, M. D., 1981, The enteric nervous system, Ann. Rev. Neurosci. 4: 227–272.PubMedGoogle Scholar
  52. Guyenet, P. G., and Cabot, J. B., 1981, Inhibition of sympathetic preganglionic neurons by catecholamines and clonidine: Mediation by an a-adrenergic receptor, J. Neurosci. 1: 908–917.PubMedGoogle Scholar
  53. Haas, H. L., and Konnerth, A., 1983, Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells, Nature 302: 432–434.PubMedGoogle Scholar
  54. Headley, P. M., Duggan, A. W., and Griersmith, B. T., 1978, Selective reduction by noradrenaline and 5-hydroxytryptamine of nociceptive responses of cat dorsal horn neurons, Brain Res. 145: 185–189.PubMedGoogle Scholar
  55. Herrling, P. L., 1981, The membrane potential of cat hippocampal neurons recorded in vivo displays four different reaction-mechanisms to iontophoretically applied transmitter agonists, Brain Res. 212: 331–343.PubMedGoogle Scholar
  56. Hirst, G. D. S., and McKirdy, H. C., 1978, Presynaptic inhibition at mammalian peripheral synapse? Nature 250: 430–431.Google Scholar
  57. Hodge, C. J., Jr., Apkarian, A. V., Stevens, R. T., Vogelsang, G. D., Brown, O., and Franck, J. I., 1983, Dorsolateral pontine inhibition of dorsal horn cell responses to cutaneous stimulation: Lack of dependence on catecholaminergic systems in cat, J. Neurophysiol. 50: 1220–1235.PubMedGoogle Scholar
  58. Hoffer, B. J., Siggins, G. R., and Bloom, F. E., 1971, Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis, Brain Res. 25: 522–534.Google Scholar
  59. Hoffer, B. J., Siggins, G. R., Oliver, A. P., and Bloom, F. E., 1973, Activation of the pathway from locus coeruleus to rat cerebellar Purkinje neurons: Pharmacological evidence of noradrenergic central inhibition, J. Pharmacol. Exp. Ther. 184: 553–569.PubMedGoogle Scholar
  60. Hopkins, W. F., and Johnston, D., 1984, Frequency-dependent noradrenergic modulation of long-term potentiation in the hippocampus, Science 226: 350–352.PubMedGoogle Scholar
  61. Horn, J. P., and McAfee, D. A., 1979, Norepinephrine inhibits calcium-dependent potentials in rat sympathetic neurons, Science 204: 1233–1235.PubMedGoogle Scholar
  62. Horn, J. P., and McAfee, D. A., 1980, Alpha-adrenergic inhibition of calcium-dependent potentials in rat sympathetic neurones, J. Physiol. (Lund.) 301: 191–204.Google Scholar
  63. Jahr, C. E., and Nicoll, R. A., 1982, Noradrenergic modulation of dendrodendritic inhibition in the olfactory bulb, Nature 297: 227–229.PubMedGoogle Scholar
  64. Jeftinija, S., Semba, K, and Randié, M., 1983, Norepinephrine reduces excitability of single cutaneous primary afferent C and A fibers in the cat spinal cord, in: Advances in Pain Research and Therapy (J. J. Bonica, ed.), vol. 5, Raven Press, New York, pp. 271–276.Google Scholar
  65. Johnson, E. S., Roberts, M. H. T., and Straughan, D. W., 1969, The responses of cortical neurones to monoamines under differing anaesthetic conditions, J. Physiol. (Land.) 203: 261–280.Google Scholar
  66. Kafka, M. S., and Thoa, N. B., 1979, a-Adrenergic receptors in the rat superior cervical ganglion, Biochem. Pharmacol. 28: 2485–2489.Google Scholar
  67. Kasamatsu, T., and Heggelund, P., 1982, Single cell responses in cat visual cortex to visual stimulation during iontophoresis of noradrenaline, Exp. Brain Res. 45: 317–327.PubMedGoogle Scholar
  68. Kayama, Y., Negi, T., Sugitani, M., and Iwama, K., 1982, Effects of locus coeruleus stimulation on neuronal activities of dorsal lateral geniculate nucleus and perigeniculate reticular nucleus of the rat, Neuroscience 7: 655–666.PubMedGoogle Scholar
  69. Kilbinger, H., 1982, The myenteric plexus-longitudinal muscle preparation, in: Progress in Cholinergic Biology: Model Cholinergic Synapses ( I. Hanin and A. M. Goldberg, eds.), Raven Press, New York, pp. 137–167.Google Scholar
  70. Kosterlitz, H. W., Lydon, R. J., and Watt, A. J., 1970, The effects of adrenaline, noradrenaline and isoprenaline on inhibitory a-and ß-adrenoceptors in the longitudinal muscle of the guinea-pig ileum, Br. J. Pharmacol. 39: 398–413.PubMedGoogle Scholar
  71. Krnjevic, K., and Phillis, J. W., 1963, Actions of certain amines on cerebral cortical neurones, Br. J. Pharmacol. Chemother. 20: 471–489.PubMedGoogle Scholar
  72. Lacaille, J. C., and Harley, C. W., 1983, In vitro superfusion of norepinephrine potentiates the perforant path evoked field potential in the dentate gyrus, Soc. Neurosci. Abstr. 9: 1001.Google Scholar
  73. Lands, A. M., Arnold, A., McAuliff, J. P., Luduena, F. P., and Brown, T. G., Jr., 1967, Differentiation of receptor systems activated by sympathomimetic amines, Nature 214: 597–598.PubMedGoogle Scholar
  74. Langer, S. Z., 1981, Presynaptic regulation of the release of catecholamines, Pharmacol. Rev. 32: 337–362.Google Scholar
  75. Levitt, P., and Moore, R. Y., 1979, Origin and organization of brainstem catecholamine innervation in the rat, J. Comp. Neurol. 186: 505–528.PubMedGoogle Scholar
  76. Madar, Y., and Segal, M., 1981, Differential effects of noradrenaline in the visual cortex, Neurosci. Lett. (Suppl.) 7: S162.Google Scholar
  77. Madison, D. V., and Nicoll, R. A., 1982, Noradrenaline blocks accomodation of pyramidal cell discharge in the hippocampus, Nature 299: 636–638.PubMedGoogle Scholar
  78. Marrazzi, A. S., 1939, Electrical studies on the pharmacology of autonomic synapses. II. The action of a sympathomimetic drug (epinephrine) on sympathetic ganglia, J. Pharmacol. Exp. Ther. 65: 395–404.Google Scholar
  79. Mayer, S. E., 1980., Neurohormonal transmission and the autonomic nervous system, in: Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 6th edition (A. G. Gilman, L. S. Goodman, and A. Gilman, eds.), Macmillan, New York, pp. 56–90.Google Scholar
  80. McAfee, D. A., 1982, Superior cervical ganglion: Physiological considerations, in: Progress in Cholinergic Biology: Model Cholinergic Synapses ( I. Hanin and A. M. Goldberg, eds.), Raven Press, New York, pp. 191–211.Google Scholar
  81. McAfee, D. A., and Yarowsky, P. J., 1979, Calcium-dependent potentials in the mammalian sympathetic neurone, J. Physiol. (Lond.), 290: 507–523.Google Scholar
  82. McCall, R. B., and Aghajanian, G. K., 1979, Serotonergic facilitation of facial motoneuron excitation, Brain Res. 169: 11–27.PubMedGoogle Scholar
  83. Moises, H. C., and Woodward, D. J., 1980, Potentiation of GABA inhibitory action in cerebellum by locus coeruleus stimulation, Brain Res. 182: 327–344.PubMedGoogle Scholar
  84. Moises, H. C., Woodward, D. J., Hoffer, B. J., and Freedman, R., 1979, Interactions of norepinephrine with Purkinje cell responses to putative amino acid neurotransmitters applied by microiontophoresis, Exp. Neurol. 64: 493–515.PubMedGoogle Scholar
  85. Molliver, M. E., Grzanna, R., Lidov, H. G. W., Morrison, J. H., and Olschowka, J., 1982, Monoamine systems in the cerebral cortex, in: Cytochemical Methods in Neuroanatomy ( S. L. Palay and V. Chan-Palay, eds.) Alan R. Liss, New York, pp. 255–277.Google Scholar
  86. Moore, R. Y., and Bloom, F. E., 1979, Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems, Ann. Rev. Neurosci. 2: 113–168.PubMedGoogle Scholar
  87. Moore, S. D., and Guyenet, P. G., 1983a, An electrophysiological study of the forebrain projection of nucleus commissuralis: Preliminary identification of presumed A2 catecholaminergic neurons, Brain Res. 263: 211–222.PubMedGoogle Scholar
  88. Moore, S. D., and Guyenet, P. G., 1983b, Alpha-receptor mediated inhibition of A2 noradrenergic neurons, Brain Res. 276: 188–191.PubMedGoogle Scholar
  89. Morita, K., and North, R. A., 1981, Clonidine activates membrane potassium conductance in myenteric neurones, Br. J. Pharmacol. 74: 419–428.PubMedGoogle Scholar
  90. Mueller, A. L., Hoffer, B. J., and Dunwiddie, T. V., 1981, Noradrenergic responses in rat hippocampus: Evidence for mediation by a and ß receptors in the in vitro slice, Brain Res. 214: 113–126.PubMedGoogle Scholar
  91. Mueller, A. L., Kirk, K. L., Hoffer, B. J., and Dunwiddie, T. V., 1982, Noradrenergic responses in rat hippocampus: Electrophysiological actions of direct-and indirect-acting sympathomimetics in the in vitro slice, J. Pharmacol. Exp. Ther. 223: 599–605.PubMedGoogle Scholar
  92. Nakai, Y., and Takaori, S., 1974, Influence of norepinephrine-containing neurons derived from the locus coeruleus on lateral geniculate neuronal activities of cats, Brain Res. 71: 47–60.PubMedGoogle Scholar
  93. Nakamura, S., Tepper, J. M., Young, S. J., and Groves, P. M., 1981, Neurophysiological consequences of presynaptic receptor activation: changes in noradrenergic terminal excitability, Brain Res. 226: 155–170.PubMedGoogle Scholar
  94. Nakamura, T., Yoshimura, M., Shinnick-Gallagher, J. P. and Akasu, T., 1984, az and a1-adrenoceptors mediate opposing actions on parasympathetic neurons, Brain Res. 323: 349–353.Google Scholar
  95. Neuman, R. S., and Harley, C. W., 1983, Long-lasting potentiation of the dentate gyrus population spike by norepinephrine, Brain Res. 273: 162–165.PubMedGoogle Scholar
  96. Nishi, S., and North, R. A., 1973a, Intracellular recording from the myenteric plexus of the guinea-pig ileum, J. Physiol. (Lond.) 231: 471–491.Google Scholar
  97. Nishi, S., and North, R. A., 1973b, Presynaptic action of noradrenaline in the myenteric plexus, J. Physiol. (Lond. ) 231: 29–39 P.Google Scholar
  98. North, R. A., and Yoshimura, M., 1984, The actions of noradrenaline on neurones of the rat substantia gelatinosa in vitro, J. Physiol. (Lond.) 349: 43–55.Google Scholar
  99. Paton, W. D. M., and Vizi, E.S., 1969, The inhibitory action of noradrenaline and adrenaline on acetylcholine output by guinea-pig ileum longitudinal muscle strip, Br. J. Pharmacol. 35: 10–28.PubMedGoogle Scholar
  100. Pun, R. Y. K., Marshall, K. C., Hendelman, W. J., Guthrie, P. B., and Nelson, P. G., 1985, Noradrenergic responses of spinal neurons in locus coeruleus-spinal cord co-cultures, J. Neurosci. 5: 181–191.PubMedGoogle Scholar
  101. Randle, J. C. R., Bourque, C. W., and Renaud, L. P., 1983, a-Adrenergic activation of rat hypothalamic supraoptic neurons maintained in vitro, Brain Res. 307: 374–378.Google Scholar
  102. Reichenbacher, D., Reimann, W., and Starke, K., 1982, a-Adrenoceptor-mediated inhibition of noradrenaline release in rabbit brain cortex slices. Receptor properties and role of the biophase concentration of noradrenaline, Naunym Schmiedeberg’s Arch. Pharmacol. 319: 71–77.Google Scholar
  103. Reuter, H., and Scholz, H., 1977, The regulation of the calcium conductance of cardiac muscle by adrenaline, J. Physiol. (Land.) 264: 49–62.Google Scholar
  104. Reuter, H., Cachelin, A. B., De Peyer, J. E., and Kokobun, S., 1983, Modulation of calcium channels in cultured cardiac cells by isoproterenol and 8-bromo-cAMP, Cold Spring Harbor Symp. Quant. Biol. 48: 193–200.Google Scholar
  105. Rogawski, M. A., 1985, The A-current: How ubiquitous a feature of excitable cells is it? Trends Neurosci. 8: 214–219.Google Scholar
  106. Rogawski, M. A., and Aghajanian, G. K. 1980a, Activation of lateral geniculate neurons by norepinephrine: Mediation by an a-adrenergic receptor, Brain Res. 182: 345–359.PubMedGoogle Scholar
  107. Rogawski, M. A., and Aghajanian, G. K., 1980b, Modulation of lateral geniculate neurone excitability by noradrenaline microiontophoresis or locus coeruleus stimulation, Nature 287: 731–734.PubMedGoogle Scholar
  108. Rogawski, M. A., and Aghajanian, G. K., 1982, Activation of lateral geniculate neurons by locus coeruleus or dorsal noradrenergic bundle stimulation: Selective blockade by the alpha,adrenoceptor antagonist prazosin, Brain Res. 250: 31–39.PubMedGoogle Scholar
  109. Ruffolo, R. R., Jr., Waddell, J. E., and Yaden, E. L., 1980, Receptor interactions of imidazolines. IV. Structural requirements for alpha adrenergic receptor occupation and receptor activation by clonidine and a series of structural analogs in rat aorta, J. Pharmacol. Exp. Ther. 213: 267–272.PubMedGoogle Scholar
  110. Sagen, J., and Proudfit, H. K., 1984, Effect of intrathecally administered noradrenergic antagonists on nociception in the rat, Brain Res. 310: 295–301.PubMedGoogle Scholar
  111. Segal, M., 1981, The action of norepinephrine in the rat hippocampus: Intracellular studies in the slice preparation, Brain Res. 206: 107–128.PubMedGoogle Scholar
  112. Segal, M., and Bloom, F. E., 1974, The action of norepinephrine in the rat hippocampus. I. Iontophoretic studies, Brain Res. 72: 79–97.PubMedGoogle Scholar
  113. Segal, M., and Bloom, F. E., 1976, The action of norepinephrine in the rat hippocampus. IV. The effects of locus coeruleus stimulation on evoked hippocampal unit activity, Brain Res. 107: 513–525.PubMedGoogle Scholar
  114. Siggins, G. R., Oliver, A. P., Hoffer, B. J., and Bloom, F. E., 1971, Cyclic adenosine monophosphate and norepinephrine: Effects of transmembrane properties on cerebellar Purkinje cells, Science 171: 192–194.PubMedGoogle Scholar
  115. Stanton, P. K., and Sarvey, J. M., 1985a, Blockade of norepinephrine-induced long-lasting potentiation in hippocampal dentate gyrus by an inhibitor of protein synthesis, Brain Res. in press.Google Scholar
  116. Stanton, P. K., and Sarvey, J. M., 1985b, Depletion of norepinephrine, but not serotonin, reduces long-term potentiation in the dentate of rat hippocampal slices, J. Neurosci. 5: 2169–2176.Google Scholar
  117. Starke, K., and Docherty, J. R., 1980, Recent developments in a-adrenoceptor research, J. Cardiovasc. Pharmacol. 2 (Suppl. 3): 5269–5286.Google Scholar
  118. Stone, T. W., and Taylor, D. A., 1977, The nature of adrenoceptors in the guinea pig cerebral cortex: A microiontophoretic study, Can. J. Physiol. Pharmacol. 55: 1400–1404.PubMedGoogle Scholar
  119. Strahlendorf, J. C., Strahlendorf, H. K., Kingsley, R. E., Gintautas, J., and Barnes, C. D., 1980. Facilitation of the lumbar monosynaptic reflexes by locus coeruleus stimulation, Neuro-pharmacology 19: 225–230.Google Scholar
  120. Szabadi, E., 1979, Adrenoceptors on central neurones: Microelectrophoretic studies: Neuro-pharmacology 18: 831–843.Google Scholar
  121. Tsein, R. W., Bean, B. P., Hess, P., and Nowycky, M., 1983, Calcium channels: Mechanisms of ß-adrenergic modulation and ion permeation, Cold Spring Harbor Symp. Quant. Biol. 48: 201–212.Google Scholar
  122. VanderMaelen, C. P., and Aghajanian, G. K., 1980, Intracellular studies showing modulation of facial motoneurone excitability by serotonin, Nature 287: 346–347.PubMedGoogle Scholar
  123. VanderMaelen, C. P., and Aghajanian, G. K., 1983, Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices, Brain Res. 289: 109–119.PubMedGoogle Scholar
  124. Videen, T. O., Daw, N. W., and Rader, R. K., 1984, The effect of norepinephrine on visual cortical neurons in kittens and adult cats, J. Neurosci. 4: 1607–1617.PubMedGoogle Scholar
  125. Waterhouse, B. D., and Woodward, D. J., 1980, Interaction of norepinephrine with cerebro-cortical activity evoked by stimulation of somatosensory afferent pathways, Exp. Neurol. 67: 11–34.PubMedGoogle Scholar
  126. Waterhouse, B. D., Moises, H. C., and Woodward, D. J., 1981, Alpha-receptor-mediated facilitation of somatosensory cortical neuronal responses to excitatory synaptic inputs and iontophoretically applied acetylcholine, Neuropharmacology 20: 907–920.PubMedGoogle Scholar
  127. Waterhouse, B. D., Moises, H. C., Yeh, H. H., and Woodward, D. J., 1982, Norepinephrine enhancement of inhibitory synaptic mechanisms in cerebellum and cerebral cortex: Mediation by beta adrenergic receptors, J. Pharmacol. Exp. Ther. 221: 495–506.PubMedGoogle Scholar
  128. Wemer, J., Frankhuyzen, A. L., and Mulder, A. H., 1982, Pharmacological characterization of presynaptic alpha-adrenoceptors in the nucleus solitarii and the cerebral cortex of the rat, Neuropharmacology 21: 499–506.PubMedGoogle Scholar
  129. Westlund, K. N., Bowker, R. M., Ziegler, M. G., and Coulter, J. D., 1983, Noradrenergic projections to the spinal cord of the rat, Brain Res. 263: 15–31.PubMedGoogle Scholar
  130. White, S. R., and Neuman, R. S., 1980, Facilitation of spinal motoneurone excitability by 5hydroxytryptamine and noradrenaline, Brain Res. 188: 119–127.PubMedGoogle Scholar
  131. Wikberg, J. E. S., and Lefkowitz, R. J., 1982, Alpha, adrenergic receptors are located prejunctionally in the Auerbach’s plexus of the guinea pig small intestine: direct demonstration by radioligand binding, Life Sci. 31: 2899–2905.PubMedGoogle Scholar
  132. Wilkberg, J., 1978, Differentiation between pre-and postjunctional a-receptors in guinea pig ileum and rabbit aorta, Acta Physiol. Scand. 103: 225–239.Google Scholar
  133. Williams, J. T., and North, R. A., 1985, Catecholamine inhibition of calcium action potentials in rat locus coeruleus neurones, Neuroscience 14: 103–109.PubMedGoogle Scholar
  134. Williams, J. T., Henderson, G., and North, R. A. 1985, Characterization of a2-adrenoceptors which increase potassium conductance in rat locus coeruleus neurones, Neuroscience 14: 95–101.PubMedGoogle Scholar
  135. Wood, J. D., and Mayer, C. J., 1979, Adrenergic inhibition of serotonin release from neurons in guinea pig Auerbach’s plexus, J. Neurophysiol. 42: 594–603.PubMedGoogle Scholar
  136. Wohlberg, C. J., Hackman, J. C., Ryan, G. P., and Davidoff, R. A., 1983, Hyperpolarization of primary afferent terminals mediated by a2-adrenoceptors, Soc. Neurosci. Abstr. 9: 1001.Google Scholar
  137. Yeh, H. H., and Woodward, D. J., 1983, Beta-1 adrenergic receptors mediate noradrenergic facilitation of Purkinje cell responses to gamma-aminobutyric acid in cerebellum of rat, Neuropharmacology 22: 629–639.PubMedGoogle Scholar
  138. Yoshimura, M., and Nishi, S., 1982, Intracellular recordings from lateral horn cells of the spinal cord in vitro, J. Autonom. Nerv. Syst. 6: 5–11.Google Scholar
  139. Young, W. S., and Kuhar, M. J., 1980, Noradrenergic al and a2 receptors: Light microscopic autoradiographic localization, Proc. Natl. Acad. Sci. U.S.A. 77: 1696–1700.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Michael A. Rogawski

There are no affiliations available

Personalised recommendations