Serotonin (5-hydroxytryptamine; 5-HT), along with dopamine and norepinephrine, is one of the biogenic amines. But unlike dopamine and norepinephrine, which are catecholamines, 5-HT is derived from an indole nucleus and is therefore classified as an indoleamine. Although the major focus of current research on serotonin concerns its role in the nervous system, historically the amine became known by viture of its presence in the blood and gut (see Cooper et al., 1978; Douglas, 1980).


Serotonin Receptor Myenteric Plexus Input Resistance Dorsal Raphe Dorsal Raphe Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G. K., 1981b, The modulatory role of serotonin at multiple receptors in brain, in: Serotonin Neurotransmission and Behavior ( B. L. Jacobs and A. Gelperin, eds.), Cambridge, Massachusetts, MIT Press, pp. 156–185.Google Scholar
  2. Aghajanian G. K., 1982, Regulation of serotonergic neuronal activity: Autoreceptors and pacemaker potentials, in: Serotonin in Biological Psychiatry (B. T. Ho, I. C. Schoolar, and E. Usdin, eds.), Raven Press, New York, pp. 173–181.Google Scholar
  3. Aghajanian, G. K., and Bloom, F. E., 1967, Localization of tritiated serotonin in rat brain by electron-microscopic autoradiography, J. Pharmacol. Exp. Ther. 156 (1): 23–30.PubMedGoogle Scholar
  4. Aghajanian, G. K., and Gallager, D. W., 1975, Raphe origin of serotonergic nerves terminating in the cerebral ventricles, Brain Res 88: 221–231.PubMedCrossRefGoogle Scholar
  5. Aghajanian, G. K., and Lakoski, J. M., 1984, Hyperpolarization of serotonergic neurons by serotonin and LSD: Studies in brain slices showing increased K’ conductance, Brain Res. 305: 181–185.PubMedCrossRefGoogle Scholar
  6. Aghajanian, G. K., and McCall, R. B., 1980, Serotonergic synaptic input to facial motoneurons: Localization by electron-microscopic autoradiography, Neuroscience 5: 2155–2162.PubMedCrossRefGoogle Scholar
  7. Aghajanian, G. K., and VanderMaelen, C. P., 1982a, Intracellular identification of central noradrenergic and serotonergic neurons by a new double labeling procedure, J. Neurosci. 2 (12): 1786–1792.PubMedGoogle Scholar
  8. Aghajanian, G. K., and VanderMaelen, C. P., 1982b, Intracellular recordings from serotonergic dorsal raphe neurons: Pacemaker potentials and the effect of LSD, Brain Res. 238: 463–469.PubMedCrossRefGoogle Scholar
  9. Aghajanian, G. K., and VanderMaelen, C. P., 1985, Specific systems of the reticular core: Indoleamines—Serotonin, in: Handbook of Physiology. The Nervous System. Intrinsic Regulatory Systems of the Brain (F. E. Bloom, ed.), Am. Physiol. Soc., Bethesda, Maryland, in press.Google Scholar
  10. Aghajanian, G. K., and Wang, R. Y., 1978, Physiology and pharmacology of central serotonergic neurons, in: Psychopharmacology: A Generation of Progress ( M. A. Lipton, A. DiMascio, and K. F. Killam, eds.), Raven Press, New York, pp. 171–183.Google Scholar
  11. Aghajanian, G. K., Haigler, H. J., and Bloom, F. E., 1972, Lysergic acid diethylamide and serotonin: Direct action on serotonin-containing neurons, Life Sci. 11: 615–622.CrossRefGoogle Scholar
  12. Akasu, T., Hirai, K., and Koketsu, K., 1981, 5-Hydroxytryptamine controls ACh-receptor sensitivity of bullfrog sympathetic ganglion cells, Brain Res. 211: 217–220.Google Scholar
  13. Andersen, E., Rigor, B., and Dafny, N., 1983, Electrophysiological evidence of concurrent dorsal raphe input to caudate, septum, habenula, thalamus, hippocampus, cerebellum and olfactory bulb, Int. J. Neurosci. 18: 107–116.PubMedCrossRefGoogle Scholar
  14. Anderson, J., 1983, Serotonin receptor changes after chronic antidepressant treatments: Ligand binding, electrophysiological, and behavioral studies, Life Sciences 32: 1791–1801.PubMedCrossRefGoogle Scholar
  15. Apperley, E., Feniuk, W., Humphrey, P. P. A., and Levy, G. P., 1980, Evidence for two types of excitatory receptor for 5-hydroxytryptamine in dog isolated vasculature, Br. J. Pharmacol. 68: 215–224.PubMedGoogle Scholar
  16. Araneda, S., Gamrani, H., Font, C., Calas, A., Pujol, J.-F., and Bobillier, P., 1980, Retrograde axonal transport following injection of [3H]-serotonin into the olfactory bulb. II. Radio-autographic study, Brain Res. 196: 417–427.PubMedCrossRefGoogle Scholar
  17. Baraban, J. M., and Aghajanian, G. K., 1980, Suppression of firing activity of 5-HT neurons in the dorsal raphe by alpha-adrenoceptor antagonists, Neuropharmacology 19: 355–363.PubMedCrossRefGoogle Scholar
  18. Baraban, J. M., and Aghajanian, G. K., 1981, Noradrenergic innervation of serotonergic neurons in the dorsal raphe: Demonstration by electron microscopic autoradiography, Brain Res. 204: 1–11.PubMedCrossRefGoogle Scholar
  19. Basbaum, A. I., 1981, Descending control of pain transmission: Possible serotonergic-enkephalinergic interactions, in: Serotonin: Current Aspects of Neurochemistry and Function ( B. Haber, S. Gabay, M. R. Issidorides, and S. G. A. Alivisatos, eds.), Plenum Press, New York, pp. 177–189.Google Scholar
  20. Bean, B. P., Nowycky, M. C., and Tsien, R. W., 1983, ß-Adrenergic modulation of the number of functional calcium channels in frog heart cells, Soc. Neurosci. Abst. 9: 509.Google Scholar
  21. Bevan, P., Bradshaw, C. M., and Szabadi, E., 1975, Effects of desipramine on neuronal responses to dopamine, noradrenaline, 5-hydroxytryptamine and acetylcholine in the caudate nucleus of the rat, Br. J. Pharmacol. 54: 285–293.PubMedGoogle Scholar
  22. Bloom, F. E., Hoffer, B. J., Siggins, G. R., Barker, J. L., and Nicoll, R. A., 1972, Effects of serotonin on central neurons: Microiontophoretic administration, Fed. Proc. 31 (1): 97–106.Google Scholar
  23. Boakes, R. J., Bradley, P. B., Briggs, I., and Dray, A., 1969, Antagonism by LSD to effects of 5-HT on single neurones, Brain Res. 15: 529–531.PubMedCrossRefGoogle Scholar
  24. Bornstein, J. C., North, R. A., Costa, M., and Furness, J. B., 1984, Excitatory synaptic potentials due to activation of neurons with short projections in the myenteric plexus, Neuroscience 11: 723–731.PubMedCrossRefGoogle Scholar
  25. Breese, G. R., 1975, Chemical and immunochemical lesions by specific neurotoxic substances and antisera, in: Biochemical Principles and Techniques in Neurophamacology, Volume 1 ( L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Plenum Press, New York, pp. 137–189.Google Scholar
  26. Bülbring, E., and Gershon, M. D., 1967, 5-Hydroxytryptamine participation in the vagal inhibitory innervation of the stomach, J. Physiol. (Land.) 192: 832–846.Google Scholar
  27. Carstens, E., Klumpp, D., Randic, M., and Zimmerman, M., 1981, Effect of iontophoretically applied 5-hydroxytryptamine on the excitability of single primary afferent C- and A-fibers in the cat spinal cord, Brain Res. 220: 151–158.PubMedCrossRefGoogle Scholar
  28. Chan-Palay, V., 1976, Serotonin axons in the supra-and subependymal plexuses and in the leptomeninges: Their roles in local alterations of cerebrospinal fluid and vasomotor activity, Brain Res. 102: 103–130.PubMedCrossRefGoogle Scholar
  29. Chan-Palay, V., Jonsson, G., and Paley, S. L., 1978, Serotonin and substance P coexist in neurons of the rat’s central nervous system, Proc. Natl. Acad. Sci. USA 75: 1582–1586.PubMedCrossRefGoogle Scholar
  30. Cohen, M. L., Fuller, R. W., and Wiley, K. S., 1981, Evidence of 5-HT2 receptors mediating contraction in vascular smooth muscle, J. Pharmacol. Exp. Ther. 218: 421–425.PubMedGoogle Scholar
  31. Colpaert, F. C., and Janssen, P. A. J., 1983, The head-twitch response to intraperitoneal injection of 5-hydroxytryptophan in the rat: Antagonist effects of purported 5-hydroxytryptamine antagonists and of pirenperone, an LSD antagonist, Neuropharmacology 22: 993–1000.PubMedCrossRefGoogle Scholar
  32. Cooper, J. R., Bloom, F. E., and Roth, R. H., 1978, The Biochemical Basis of Neuropharmacology, Oxford University Press, New York.Google Scholar
  33. Cottrell, G. A., and Green, K. A., 1982, Responses of mouse spinal neurones in culture to locally applied serotonin, J. Physiol. (Lond.) 325: 25P - 26 P.Google Scholar
  34. Dahlström, A., and Fuxe, K., 1964, Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in cell bodies of brainstem neurons, Acta Physiol. Scand. 62 (Suppl. 232): 1–55.Google Scholar
  35. Davies, J., and Tongroach, P., 1978, Neuropharmacological studies on the nigro-striatal and raphe-striatal system in the rat, Eur. J. Pharmacol. 51: 91–100.PubMedCrossRefGoogle Scholar
  36. deMontigny, C., 1981, Enhancement of the 5-HT neurotransmission by antidepressant treatments, J. Physiol. (Paris) 77: 455–461.Google Scholar
  37. deMontigny, C., and Aghajanian, G. K., 1978, Tricyclic antidepressants: long-term treatment increases responsivity of rat forebrain neurons to serotonin, Science 202: 1303–1306.CrossRefGoogle Scholar
  38. Descarries, L., Beaudet, A., Watkins, K. C., and Garcia, S., 1979, The serotonin neurons in nucleus raphe dorsalis of adult rat, Anat. Rec. 193: 520.Google Scholar
  39. Douglas, W. W., 1980, Histamine and 5-hydroxytryptamine (serotonin) and their antagonists, in: Goodman and Gilman’s The Pharmacological Basis of Therapeutics, Sixth Edition ( A. G. Gilman, L. S. Goodman, and A. Gilman, eds.), MacMillan Publishing Company, New York, pp. 609–646.Google Scholar
  40. Dun, N. J., and Karczmar, A. G., 1981, Evidence for a presynaptic inhibitory action of 5-hydroxytryptamine in a mammalian sympathetic ganglion, J. Pharmacol. Exp. Ther. 217: 714–718.PubMedGoogle Scholar
  41. Dunlap, K., and Fischbach, G. D., 1978, Neurotransmitters decrease the calcium component of sensory neurone action potentials, Nature 276: 837–839.PubMedCrossRefGoogle Scholar
  42. Dunlap, K., and Fischbach, G. D., 1981, Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones, J. Physiol. (Land.) 317: 519–535.Google Scholar
  43. Engberg, I., Flatman, J. A., and Kadzielawa, K., 1976, Lack of specificity of motoneurone re-sponses to microiontophoretically applied phenolic amines, Acta Physiol. Scand. 96: 137–139.CrossRefGoogle Scholar
  44. Ennis, C., and Cox, B., 1982, The effect of tryptamine on serotonin release from hypothalamic slices is mediated by a cholinergic interneurone, Psychopharmacology 78: 85–88.PubMedCrossRefGoogle Scholar
  45. Ennis, C., Kemp, J. D., and Cox, B., 1981, Characterisation of inhibitory 5-hydroxytryptamine receptors that modulate dopamine release in the striatum. J. Neurochem. 36 (4): 1515–1520.PubMedCrossRefGoogle Scholar
  46. Erspamer, V., 1954, Pharmacology of indolealkylamines, Pharmacol. Rev. 6: 425–487.Google Scholar
  47. Felten, D. L., and Crutcher, K. A., 1979, Neuronal-vascular relationships in the raphe nuclei, locus coeruleus, and substantia nigra in primates, Am. J. Anat. 155 (4): 467–481.PubMedCrossRefGoogle Scholar
  48. Fibiger, H. C., and Miller, J. J., 1977, An anatomical and electrophysiological investigation of the serotonergic projection from the dorsal raphe nucleus to the substantia nigra in the rat, Neuroscience 2: 975–987.CrossRefGoogle Scholar
  49. Foote, S. L., Bloom, F. E., and Aston-Jones, G., 1983, Nucleus locus coeruleus: New evidence of anatomical and physiological specificity, Physiol. Rev. 63 (3): 844–914.Google Scholar
  50. Fozard, J. R., Mobarok Ali, A. T. M., and Newgrosh, G., 1979, Blockade of serotonin receptors on autonomic neurones by (H-cocaine and some related compounds, Eur. J. Pharmacol. 59: 195–210.PubMedCrossRefGoogle Scholar
  51. Gaddum, J. H., 1953, Antagonism between lysergic acid diethylamide and 5-hydroxytryptamine, J. Physiol. (Lond.) 121: 15 P.Google Scholar
  52. Gaddum, J. H., and Picarelli, Z. P., 1957, Two kinds of tryptamine receptor, Br. J. Pharmacol. 12: 323–328.Google Scholar
  53. Gershon, M. D., 1982, Serotonergic neurotransmission in the gut, Scand. J. Gastroenterol. (Norway) 17 (71): 26–41.Google Scholar
  54. Glazer, E. J., Steinbusch, H. W. M., Verhofstad, A. A. J., and Basbaum, A. I., 1981, Serotonergic neurons in nucleus raphe dorsalis and paragigantocellularis of the cat contain enkephalin, J. Physiol. (Paris) 77: 241–245.Google Scholar
  55. Göthert, M., and Weinheimer, G., 1979, Extracellular 5-hydroxytryptamine inhibits 5-hydroxytryptamine release from rat brain cortex slices, Naunyn Schmiedebergs Arch. Pharmacol. 310: 93–96.Google Scholar
  56. Göthert, M., Huth, H., and Schlicker, E., 1981, Characterization of the receptor subtype involved in alpha-adrenoceptor-mediated modulation of serotonin release from rat brain cortex slices, Naunyn Schmiedebergs Arch. Pharmacol. 317: 199–203.Google Scholar
  57. Grafe, P., Mayer, C. J., and Wood, J. D., 1980, Synaptic modulation of calcium-dependent potassium conductance in myenteric neurones in the guinea pig, J. Physiol. (Lond.) 305: 235–248.Google Scholar
  58. Haigler, H. J., and Aghajanian, G. K., 1974a, Lysergic acid diethylamide and serotonin: a comparison of effects on serotonergic neurons and neurons receiving a serotonergic input, J. Pharmacol. Exp. Ther. 188: 688–699.PubMedGoogle Scholar
  59. Haigler, H. J., and Aghajanian, G. K., 1974b, Peripheral serotonin antagonists: failure to antagonize serotonin in brain areas receiving a prominent serotonergic input, J. Neural Transm. 35: 257–273.CrossRefGoogle Scholar
  60. Hery, F., Soubrie, P., Bourgoin, S., Motastruc, J. L., Artaud, F., and Glowinski, J., 1980, Dopamine released from dendrites in the substantia nigra controls the nigral and striatal release of serotonin, Brain Res. 193: 143–151.PubMedCrossRefGoogle Scholar
  61. Herz, A., and Zieglgänsberger, W., 1968, The influence of microelectrophoretically applied biogenic amines, cholinomimetics and procain on synaptic excitation in the corpus striatum, Int. J. Neuropharmacol. 7: 211–230.Google Scholar
  62. Heym, J., Steinfels, G. F., and Jacobs, B. L., 1982, Medullary serotonergic neurons are insensitive to 5-MEODMT and LSD, Eur. J. Pharmacol. 81: 677–680.PubMedCrossRefGoogle Scholar
  63. Higashi, H., 1977, 5-Hydroxytryptamine receptors on visceral primary afferent neurones in the nodose ganglion of the rabbit, Nature 267: 448–450.Google Scholar
  64. Hirai, K., and Koketsu, K., 1980, Presynaptic regulation of the release of acetylcholine by 5hydroxytryptamine, Br. J. Pharmacol. 70: 499–500.PubMedGoogle Scholar
  65. Holz, G. A. IV, Shefner, S. A., and Anderson, E. G., 1983, Serotonin depolarizes A- and C-type primary afferents: an intracellular study in bullfrog dorsal root ganglion, Soc. Neurosci. Abst. 9: 254.Google Scholar
  66. Jacobs, B. L., 1976, An animal model for studying central serotonergic synapses, Life Sci. 19: 777–785.PubMedCrossRefGoogle Scholar
  67. Jacobs, B. L., Foote, S. L., and Bloom, F. E., 1978, Differential projections of neurons within the dorsal raphe nucleus of the rat: A horseradish peroxidase (HRP) study, Brain Res. 147: 149–153.PubMedCrossRefGoogle Scholar
  68. Jahnsen, H., 1980, The action of 5-hydroxytryptamine on neuronal membranes and synaptic transmission in area CA1 of the hippocampus in vitro, Brain Res. 197: 83–94.PubMedCrossRefGoogle Scholar
  69. Johansson, O., Hökfelt, T., Pernow, B., Jeffcoat, S. L., White, N., Steinbusch, H. W. M., Verhofstad, A. A. J., Emson, P. C., and Spindel, E., 1981, Immunohistochemical support for three putative transmitters in one neuron: Coexistence of 5-hydroxytryptamine, substance P, and thyrotropin releasing hormone-like immunoreactivity in medullary neurons projecting to the spinal cord, Neuroscience 6: 1857–1881.PubMedCrossRefGoogle Scholar
  70. Johnson,.S. M., Katayama, Y., and North, R. A., 1980, Multiple actions of 5-hydroxytryptamine on myenteric neurones of the guinea-pig ileum, J. Physiol. (Lond.) 304: 459–470.Google Scholar
  71. Kato, S., Negishi, K., Teranishi, T., and Sugawara, K., 1983, 5-Hydroxytryptamine: Its facilitative action on [3H]dopaminerelease from the retina, Vision Res. 23(4):445–449.CrossRefGoogle Scholar
  72. Kawai, N., and Yamamoto, C., 1969, Effects of 5-hydroxytryptamine, LSD and related corn-pounds on electrical activities evoked in vitro in thin sections from the superior colliculus, Int. J. Neuropharmacol. 8: 437–449.PubMedCrossRefGoogle Scholar
  73. Kiraly, M., Ma, R. C., and Dun, N. J., 1983, Serotonin mediates a slow excitatory potential in mammalian celiac ganglia, Brain Res. 275: 378–383.PubMedCrossRefGoogle Scholar
  74. Köhler, C., and Steinbusch, H., 1982, Identification of serotonin and non-serotonin-containing neurons of the mid-brain raphe projecting to the entorhinal area and the hippocampal formation. A combined immunohistochemical and fluorescent retrograde tracing study in the rat brain, Neuroscience 7 (4): 951–975.PubMedCrossRefGoogle Scholar
  75. LaMotte, C. C., Johns, D. R., and DeLanerolle, N. C., 1982, Immunohistochemical evidence of indolamine neurons in monkey spinal cord, J. Comp. Neurol. 206: 359–370.PubMedCrossRefGoogle Scholar
  76. Leysen, J. E., Niemegeers, C. J. E., Van Nueten, J. M., and Laduron, P. M., 1982, [3H]Ketanserin (R 41 468), a selective 3H-ligand for serotonine receptor binding sites, Mol. Pharmacol. 21: 301–314.Google Scholar
  77. Loewy, A. D., and McKellar, S., 1981, Serotonergic projections from the ventral medulla to the intermediolateral cell column in the rat, Brain Res. 211: 146–152.PubMedCrossRefGoogle Scholar
  78. Lucki, I., Nobler, M. S., and Frazer, A., 1984, Differential actions of serotonin antagonists on two behavioral models of serotonin receptor activation in the rat, J. Pharmacol. Exp. Ther. 228: 133–139.PubMedGoogle Scholar
  79. Martin, L. L., and Sanders-Bush, E., 1982, Comparison of the pharmacological characteristics of 5HT1 and 5HTZ binding sites with those of serotonin autoreceptors which modulate serotonin release, Naunyn Schmiedebergs Arch. Pharmacol. 321: 165–170.Google Scholar
  80. McCall, R. B., 1983, Serotonergic excitation of sympathetic preganglionic neurons: A microintophoretic study, Brain Res. 289: 121–127.PubMedCrossRefGoogle Scholar
  81. McCall, R. B., and Aghajanian, G. K., 1979, Serotonergic facilitation of facial motoneuron excitation, Brain Res. 169: 11–27.PubMedCrossRefGoogle Scholar
  82. McCall, R. B., and Aghajanian, G. K., 1980a, Hallucinogens potentiate responses to serotonin and norepinephrine in the facial motor nucleus, Life Sci. 26: 1149–1156.PubMedCrossRefGoogle Scholar
  83. McCall, R. B., and Aghajanian, G. K., 1980b, Pharmacological characterization of serotonin receptors in the facial motor nucleus: A microiontophoretic study, Eur. J. Pharmacol. 65: 175–183.PubMedCrossRefGoogle Scholar
  84. Miller, J. J., Richardson, T. L., Fibiger, H. C., and McLennan, H., 1975, Anatomical and electrophysiological identification of a projection from the mesencephalic raphe to the caudateputamen in the rat, Brain Res. 97: 133–138.PubMedCrossRefGoogle Scholar
  85. Molliver, M. E., Grzanna, R., Lidov, H. G. W., Morrison, J. H., and Olschowka, J. A., 1982, Monoamine systems in the cerebral cortex, in Cytochemical Methods in Neuroanatomy, Alan R. Liss, New York, pp. 255–277.Google Scholar
  86. Mosko, S. S., and Jacobs, B. L., 1976, Recording of dorsal raphe unit activity in vitro, Neurosci. Lett. 2: 195–200.Google Scholar
  87. Mosko, S. S., Haubrich, D., and Jacobs, B. L., 1977, Serotonergic afferents to the dorsal raphe nucleus: Evidence from HRP and synaptosomal uptake studies, Brain Res. 119: 269–290.PubMedCrossRefGoogle Scholar
  88. Moss, R. L., Kelly, M. J., and Dudley, C. A., 1978, Chemosensitivity of hypophysiotropic neurons to the microelectrophoresis of biogenic amines, Brain Res. 139: 141–152.PubMedCrossRefGoogle Scholar
  89. Neto, F. R., 1978, The depolarizing action of 5-HT on mammalian non-myelinated nerve fibres, Eur. J. Pharmacol. 49: 351–356.CrossRefGoogle Scholar
  90. Neuman, R. S., 1983, Serotonin induced depolarization of spinal motoneurones following blockade of synaptic transmission, Soc. Neurosci. Abst. 9: 11–55.Google Scholar
  91. North, R. A., Henderson, G., Katayama, Y., and Johnson, S. M., 1980, Electrophysological evidence for presynaptic inhibition of acetylcholine release by 5-hydroxytryptamine in the enteric nervous system, Neuroscience 5: 581–586.PubMedCrossRefGoogle Scholar
  92. Olpe, H.-R., and Koella, W. P., 1977, The response of striatal cells upon stimulation of the dorsal and median raphe nuclei, Brain Res. 122: 357–360.PubMedCrossRefGoogle Scholar
  93. Park, M. R., Gonzales-Vegas, J. A., and Kitai, S. T., 1982, Serotonergic excitation from dorsal raphe stimulation recorded intracellularly from rat caudate-putamen, Brain Res. 243: 49–58.PubMedCrossRefGoogle Scholar
  94. Peroutka, S. J., Lebovitz, R. M., and Snyder, S. H., 1981, Two distinct central serotonin receptors with different physiological functions, Science 212: 827–828.PubMedCrossRefGoogle Scholar
  95. Peroutka, S. J., Noguchi, M., Tolner, D. J., Allen, G. S., 1983, Serotonin-induced contraction of canine basilar artery: Mediation by 5-HT, receptors, Brain Res. 259: 327–330.PubMedCrossRefGoogle Scholar
  96. Phillis, J. W., Tebécis, A. K., and York, D. H., 1968, Depression of spinal motoneurones by noradrenaline, 5-hydroxtryptamine and histamine, Eur. J. Pharmacol. 4: 471–475.PubMedCrossRefGoogle Scholar
  97. Rapport, M. M., 1949, Serum vasoconstrictor (serotonin). V. The presence of creatinine in the complex: a proposed study of the vasoconstrictor principle, J. Biol. Chem. 180: 961–969.Google Scholar
  98. Rapport, M. M., Green, A. A., and Page, I. H., 1948, Serum vasoconstrictor (serotonin). IV. Isolation and characterization, J. Biol. Chem. 176: 1243–1251.PubMedGoogle Scholar
  99. Roberts, M. H. T., and Straughan, D. W., 1967, Excitation and depression of cortical neurones by 5-hydroxytryptamine, J. Physiol. (Lond.) 193: 269–294.Google Scholar
  100. Rogawski, M. A., and Aghajanian, G. K., 1980, Norepinephrine and serotonin: Opposite effects on the activity of lateral geniculate neurons evoked by optic pathway stimulation, Exp. Neurol. 69: 678–694.PubMedCrossRefGoogle Scholar
  101. Scheibel, M. E., Tomiyasu, U., and Scheibel, A. B., 1975, Do raphe nuclei of the reticular formation have a neurosecretory or vascular sensor function ? Exp. Neurol. 47: 316–329.PubMedCrossRefGoogle Scholar
  102. Segal, M., 1975, Physiological and pharmacological evidence for a serotonergic projection to the hippocampus, Brain Res. 94: 115–131.PubMedCrossRefGoogle Scholar
  103. Segal, M., 1979, Serotonergic innervation of the locus coeruleus from the dorsal raphe and its action on responses to noxious stimuli, J. Physiol. (Lond.) 286: 401–415.Google Scholar
  104. Segal, M., 1980, The action of serotonin in the rat hippocampal slice preparation, J. Physiol. (Lond.) 303: 423–439.Google Scholar
  105. Segal, M., and Gutnick, M. J., 1980, Effects of serotonin on extracellular potassium concentration in the rat hippocampal slice, Brain Res. 195: 389–401.PubMedCrossRefGoogle Scholar
  106. Siegelbaum, S. A., Camardo, J. S., and Kandel, E. R., 1982, Serotonin and cyclic AMP close single K* channels in Aplysia sensory neurones, Nature 299: 413–417.PubMedCrossRefGoogle Scholar
  107. Steinbusch, H. W. M., 1981, Distribution of serotonin-immunoreactivity in the central nervous system of the rat—cell bodies and terminals, Neuroscience 6 (4): 557–618.PubMedCrossRefGoogle Scholar
  108. Szabadi, E., Bradshaw, C. M., and Bevan, P., 1977, Excitatory and depressant neuronal responses to noradrenaline, 5-hydroxytryptamine and mescaline: The role of the baseline firing rate, Brain Res. 126: 580–583.PubMedCrossRefGoogle Scholar
  109. Ternaux, J. P., Hery, F., Hamon, M., Bourgoin, S., and Glowinski, J., 1977, 5-HT release from ependymal surface of the caudate nucleus in “encephale isole” cats, Brain Res. 132: 575–579.Google Scholar
  110. Tramu, G., Pillez, A., and Leonardelli, J., 1983, Serotonin axons of the ependyma and circum- ventricular organs in the forebrain of the guinea pig, Cell Tissue Res. 228: 297–311.PubMedCrossRefGoogle Scholar
  111. Trulson, M. E., Howell, G. A., Brandstetter, J. W., Frederickson, M. H., and Frederickson, C. J., 1982, In vitro recording of raphe unit activity: Evidence for endogenous rhythms in presumed serotonergic neurons, Life Sci. 31: 785–790.PubMedCrossRefGoogle Scholar
  112. Trulson, M. E., and Jacobs, B. L., 1981, Activity of serotonin-containing neurons in freely moving cats, in: Serotonin Neurotransmission and Behavior ( B. L. Jacobs and A. Gelperin, eds.), Cambridge, Massachusetts, MIT Press, pp. 339–365.Google Scholar
  113. Trulson, M. E., and Jacobs, B. L., 1979, Raphe unit activity in freely moving cats: Correlation with level of behavioral arousal, Brain Res. 163: 135–150.PubMedCrossRefGoogle Scholar
  114. Trulson, M. E., and Trulson, V. M., 1982, Activity of nucleus raphe pallidus neurons across the sleep-waking cycle in freely moving cats. Brain Res. 237: 232–237.PubMedCrossRefGoogle Scholar
  115. Twarog, B. M., and Page, I. H., 1953, Serotonin content of some mammalian tissues and urine and a method for its determination, J. Physiol. (Lund.) 175: 157–161.Google Scholar
  116. Van de Kar, L. D., and Lorens, S. A., 1979, Differential serotonergic innervation of individual hypothalamic nuclei and other forebrain regions by the dorsal and median midbrain raphe nuclei, Brain Res. 162: 45–54.PubMedCrossRefGoogle Scholar
  117. Van der Kooy, D., and Hattori, T., 1980, Bilaterally situated dorsal raphe cell bodies have only unilateral forebrain projections in rat, Brain Res. 192: 550–554.PubMedCrossRefGoogle Scholar
  118. VanderMaelen, C. P., and Aghajanian, G. K., 1980, Intracellular studies showing modulation of facial motoneurone excitability by serotonin, Nature 287: 346–347.PubMedCrossRefGoogle Scholar
  119. VanderMaelen, C. P., and Aghajanian, G. K., 1982a, Intracellular studies on the effects of systemic administration of serotonin agonists on rat facial motoneurons, Eur. J. Pharmacol. 78: 233–236.PubMedCrossRefGoogle Scholar
  120. VanderMaelen, C. P., and Aghajanian, G. K., 1982b, Serotonin-induced depolarization of rat facial motoneurons in vivo: Comparison with amino acid transmitters, Brain Res. 239: 139–152.PubMedCrossRefGoogle Scholar
  121. VanderMaelen, C. P., and Aghajanian, G. K., 1983a, Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices, Brain Res. 289: 109–119.PubMedCrossRefGoogle Scholar
  122. VanderMaelen, C. P., and Aghajanian, G. K., 1983b, Evidence for a calcium-activated potassium conductance in serotonergic dorsal raphe neurons, Soc. Neurosci. Abst. 9: 500.Google Scholar
  123. VanderMaelen, C. P., Bonduki, A. C., and Kitai, S. T., 1979, Excitation of caudate-putamen neurons following stimulation of the dorsal raphe nucleus in the rat, Brain Res. 175: 356–361.PubMedCrossRefGoogle Scholar
  124. VanderMaelen, C. P., and Kitai, S. T., 1980, Intracellular analysis of synaptic potentials in rat neostriatum following stimulation of cerebral cortex, thalamus, and substantia nigra, Brain Res. Bull. 5: 725–733.Google Scholar
  125. Van Neuten, J. M., Janssen, P. A. J., Van Beek, J., Xhonneux, R., Verbeuren, T. J., and Vanhoutte, P. M., 1981, Vascular effects of ketanserin (R 41 468), a novel antagonist of 5-HT, serotonergic receptors, J. Pharmacol. Exp. Ther. 218 (1): 217–230.Google Scholar
  126. Wallis, D., and Nash, H., 1981, Relative activities of substances related to 5-hydroxytryptamineas depolarizing agents of superior cervical ganglion cells, Eur. J. Pharmacol. 70: 381–392.PubMedCrossRefGoogle Scholar
  127. Wallis, D. I., and North, R A., 1978, The action of 5-hydroxytryptamine on single neurones of the rabbit superior cervical ganglion, Neuropharmacol. 17: 1023–1028.CrossRefGoogle Scholar
  128. Wallis, D. I., and Woodward, B., 1975, Membrane potential changes induced by 5-hydroxytryptamine in the rabbit superior cervical ganglion, Br. J. Pharmacol. 55: 199–212.PubMedGoogle Scholar
  129. Wang, R. Y., and Aghajanian, G. K., 1977a, Antidromically identified serotonergic neurons in the rat midbrain raphe: Evidence for collateral inhibition, Brain Res. 132: 186–193.PubMedCrossRefGoogle Scholar
  130. Wang, R. Y., and Aghajanian, G. K., 1977b, Inhibition of neurons in the amygdala by dorsal raphe stimulation: Mediation through a direct serotonergic pathway, Brain Res. 120: 85–102.PubMedCrossRefGoogle Scholar
  131. White, S. R., and Neuman, R. S., 1980, Facilitation of spinal motoneurone excitability by 5hydroxytryptamine and noradrenaline, Brain Res. 188: 119–127.PubMedCrossRefGoogle Scholar
  132. White, S. R., and Neuman, R. S., 1983, Pharmacological antagonism of facilitatory but not inhibitory effects of serotonin and norepinephrine on excitability of spinal motoneurons, Neuropharmacology 22 (4): 489–494.PubMedCrossRefGoogle Scholar
  133. Wood, J. D., and Mayer, C. J., 1978, Slow synaptic excitation mediated by serotonin in Auerbach’s plexus, Nature 276: 836–837.PubMedCrossRefGoogle Scholar
  134. Wood, J. D., and Mayer, C. J., 1979, Serotonergic activation of tonic-type enteric neurons in guinea pig small bowel, J. Neurophysiol. 42 (2): 582–593.PubMedGoogle Scholar
  135. Wood, J. D., Grafe, P., and Mayer, C. J., 1979, Slow synaptic modulation of excitability mediated by inactivation of calcium-dependent potassium conductance in myenteric neurons of guinea-pig small intestine, Soc. Neurosci. Abst. 5: 749.Google Scholar
  136. Wooley, D. W., and Shaw, E., 1954, A biochemical and pharmacological suggestion about certain mental disorders, Science 119: 587–588.Google Scholar
  137. Wurtman, R. J., and Fernstrom, J. D., 1976, Control of brain neurotransmitter synthesis by precursor availability and nutritional state, Biochem. Pharmacol. 25: 1691–1696.Google Scholar
  138. Yap, C. Y., and Taylor, D. A., 1983, Involvement of 5-HT, receptors in the wet-dog shake behaviour induced by 5-hydroxytryptophan in the rat, Neuropharmacology 22: 801–804.PubMedCrossRefGoogle Scholar
  139. Yoshimura, M., and Nishi, S., 1982, Intracellular recordings from lateral horn cells of the spinal cord in vitro, J. Autonom. Nerv. Syst. 6: 5–11.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • C. P. VanderMaelen

There are no affiliations available

Personalised recommendations