Although acetylcholine (ACh) was first isolated from the brain more than 50 years ago by Chang and Gaddum (see Dale, 1938) and the experiments of Curtis and Eccles (1958) identified the Renshaw cell as cholinoceptive more than 25 years ago, since that time no other synapse in the central nervous system (CNS) has been conclusively shown to be cholinergic. Indeed, the often repeated finding that the action of iontophoretic ACh on central neurons is slow in onset and highly variable in its action has led a number of workers to suggest that ACh does not function as a conventional synaptic transmitter in the brain and instead plays what has come to be known as a neuromodulatory role; i.e., it operates on single neurons by increasing or decreasing the potency of the more conventional synaptic inputs (see Bloom, 1980).


Muscarinic Receptor Nicotinic Receptor Cholinergic Neuron Sympathetic Ganglion Membrane Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, P. R., 1975, An analysis of the dose-response curve at voltage-clamped frog endplates, Pflügers Arch. 360: 145–153.PubMedGoogle Scholar
  2. Adams, P. R., 1981, The calcium current of a vertebrate neurone, in: Advances in Physiological Science, Vol. 4 ( J. Salanki, ed.), Akademiai Kiado, Budapest, pp. 135–138.Google Scholar
  3. Adams, P. R., and Brown, D. A., 1982, Synaptic inhibition of the M-current: Slow excitatory post-synaptic potential mechanism in bullfrog sympathetic neurones, J. Physiol. (Lond.) 332: 263–272.Google Scholar
  4. Adams, P. R., Brown, D. A., and Constanti, A., 1982a, M-currents and other potassium currents in bullfrog sympathetic neurones J. Physiol. (Lund.) 330: 537–572.Google Scholar
  5. Adams, P. R., Brown, D. A., and Constanti, A., 1982b, Pharmacological inhibition of the M-current, J. Physiol. (Lond.) 332: 223–262.Google Scholar
  6. Adams, P. R., Brown, D. A., and Jones, S. W., 1983, Substance P inhibits the M-current in bullfrog sympathetic neurons, Br. J. Pharmacol. 79: 330–333.PubMedGoogle Scholar
  7. Akasu, T., Hirai, K., and Koketsu, K., 1982, Modulatory actions of ATP on membrane potentials of bullfrog sympathetic ganglion cells, Brain Res. 258: 313–317.Google Scholar
  8. Alger, B. E., and Nicoll, R. A., 1981, Epileptiform burst afterhyperpolarization: Calcium-de-pendent potassium potential in hippocampal CA1 pyramidal cells, Science 210: 1122–1124.Google Scholar
  9. Andersen, P., and Curtis, D. R., 1964a, The excitation of thalamic neurones by acetylcholine, Acta Physiol. Scand. 61: 85–99.Google Scholar
  10. Andersen, P., and Curtis, D. R., 1964b, The pharmacology of the synaptic and acetylcholine- induced excitation of ventrobasal thalamic neurons, Acta Physiol. Scand. 61: 100–120.Google Scholar
  11. Anderson, C. R., and Stevens, C. F., 1973, Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction, J. Physiol. (Lond.) 235: 655–691.Google Scholar
  12. Armstrong, D. A., Saper, C. B., Levey, A. I., Wainer, B. H., and Terry, R. D., 1983, Distribution of cholinergic neurons in the rat brain demonstrated by the immunohistochemical localization of choline acetyltransferase, J. Comp. Neurol. 216: 53–68.PubMedGoogle Scholar
  13. Barker, J. L., Crayton, J. W., and Nicoll, R. A., 1971, Noradrenaline and acetylcholine response of supraoptic neurosecretory cells, J. Physiol. (Lond.) 216: 19–32.Google Scholar
  14. Beddoe, F., Nicholls, P. J., and Smith, H. J., 1971, Inhibition of the muscarinic receptor by dibenamine, Biochem. Pharmacol. 20: 3367–3376.Google Scholar
  15. Benardo, L. S., and Prince, D. A., 1981, Acetylcholine-induced modulation of hippocampal pyramidal neurons, Brain Res. 211: 227–234.PubMedGoogle Scholar
  16. Benardo, L. S., and Prince, D. A., 1982a, Cholinergic excitation of mammalian hippocampal pyramidal cells, Brain Res. 249: 315–331.Google Scholar
  17. Benardo, L. S., and Prince, D. A., 1982b, Ionic mechanisms of cholinergic excitation in mammalian hippocampal pyramidal cells, Brain Res. 249: 333–334.Google Scholar
  18. Benardo, L. S., and Prince, D. A., 1982c, Cholinergic pharmacology of mammalian hippocampal pyramidal cells, Neuroscience 7: 1703–1712.Google Scholar
  19. Ben-Ari, Y., Dingledine, R., Kanazawa, I., and Kelly, J. S., 1967a, Inhibitory effects of acetylcholine on neurones in the feline nucleus reticularis thalami, J. Physiol. (Loud.) 261: 647–671.Google Scholar
  20. Ben-Ari, Y., Kanazawa, I., and Kelly, J. S. 1976b, Exclusively inhibitory action of iontophoretic acetylcholine on single neurones of feline thalamus, Nature (Land.) 259:327–330.Google Scholar
  21. Ben-Ari, Y., Krnjevic, K., Reiffenstein, R. J., and Reinhardt, W., 1981a, Inhibitory conductance changes and action of y-aminobutyrate in rat hippocampus, Neuroscience 6: 2445–2463.Google Scholar
  22. Ben-Ari, Y., Krnjevic, K., Reinhardt, W., and Ropert, N., 1981b, Intracellular observations on the disinhibitory action of acetylcholine in the hippocampus, Neuroscience 6: 2475–2484.Google Scholar
  23. Biscoe, T. J., and Krnjevic, K., 1963, Chloralose and the activity of Renshaw cells, Exp. Neurol. 8: 395–405.Google Scholar
  24. Biscoe, T. J. and Straughan, D. W., 1966, Micro-electrophoretic studies of neurones in the rat hippocampus, J. Physiol. (Lund.) 183: 341–359.Google Scholar
  25. Blackman, J. G., Ginsborg, B. L., and House, C. R., 1979, On the time course of the electrical response of salivary gland cells of Nauphoeta cinerea to iontophoretically applied dopamine, J. Physiol. (Loud.) 283: 81–92.Google Scholar
  26. Bloom, F. E., 1975, The role of cyclic nucleotides in central synaptic function, Rev. Physiol. Biochem. Pharmacol. 74: 1–103.PubMedGoogle Scholar
  27. Bloom, F. E., Costa, E., and Salmoiraghi, G. C., 1965, Anaesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microelectrophoresis, J. Pharmacol. Exp. Ther. 150: 244–252.PubMedGoogle Scholar
  28. Bolton T. B., 1972, Rate of offset of action of slow-acting muscarinic antagonists is fast, Nature (Loud.) 270: 354–356.Google Scholar
  29. Bolton, T. B., 1976, On the latency and form of the membrane responses of smooth muscle to the iontophoretic application of acetylcholine or carbachol, Proc. R. Soc. Lond. B 194: 99–119.PubMedGoogle Scholar
  30. Borie, A. B., 1975, Modulation of mitochondrial control of cytoplasmic calcium activity, in: Calcium Transport in Contraction and Secretion (E. Carafoli, F. Clemented, W., Drabikowski, and A. Margietti, eds.) The North Holland Publishing Co., New York, pp. 77–80.Google Scholar
  31. Bradley, P. B., and Dray, A., 1972, Short-latency excitation of brain stem neurones in rat by acetylcholine, Br. J. Pharmacol. 45: 372–374.PubMedGoogle Scholar
  32. Bradley, P. B., Dhawan, B. N., and Wolstencroft, J. H., 1966, Pharmacological properties of cholinoceptive neurones in the medulla and pons of the cat, J. Physiol. (Lond.) 183: 658–673.Google Scholar
  33. Brown, D. A„ and Adams, P. R., 1980, Muscarinic suppression of a novel voltage-sensitive IC--current in a vertebrate neurone, Nature (Lond.) 283: 673–676.Google Scholar
  34. Brown, D. A., Constanti, A., and Adams, P. R., 1981, Slow cholinergic and peptidergic transmission in sympathetic ganglia, Fed. Proc. 40: 265–2630.Google Scholar
  35. Brown, D. A., Docherty, R. J., and Halliwell, J. V., 1983, Chemical transmission in the rat interpeduncular nucleus in vitro, J. Physiol. (Lond.) 341: 655–670.Google Scholar
  36. Brown, J. E., Muller, K. J., and Murray, G., 1971, Reversal potential for an electrophysiological event generated by conductance changes: Mathematical analysis, Science 174: 318.PubMedGoogle Scholar
  37. Brownstein, M., Kobayashi, R., Polkovits, M., and Saaverdra, J. M., 1975, Choline acetyltrans-ferase levels in diencephalic nuclei of the rat, J. Neurochem. 24: 35–38.PubMedGoogle Scholar
  38. Casnellie, J. E., and Greengard, P., 1974, Guanosine 3’5’-cyclic monophosphate-dependent phosphorylation of endogenous substrate proteins in membranes, Proc Natl. Acad. Sci. USA 71: 1891–1895.PubMedGoogle Scholar
  39. Cole, A. E., and Nicoll, R. A., 1983, Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells, Science 221: 1299–1301.PubMedGoogle Scholar
  40. Cole, A. E., and Shinnick-Gallagher, P., 1980, Alpha-adrenoceptor and dopamine receptor antagonists do not block the slow inhibitory postsynaptic potential in sympathetic ganglia, Brain Res. 187: 226–230.PubMedGoogle Scholar
  41. Cole, A. E., and Shinnick-Gallagher, P., 1984, Muscarinic inhibitory transmission in mammalian sympathetic ganglia mediated by increased potassium conductance, Nature (Land.) 307: 270–271.Google Scholar
  42. Colquhoun, D., and Sakmann, B., 1981, Fluctuations in the microsecond time range of the current through single acetylcholine receptor channels, Nature (Land.) 294: 464–466.Google Scholar
  43. Connor, E. A., and Parsons, R. L., 1983, Analysis of fast excitatory postsynaptic currents in bullfrog parasympathetic ganglion cells, J. Neurosci. 3: 2164–2171.PubMedGoogle Scholar
  44. Constanti, A., Adams, P. R., and Brown, D. A., 1981, Why do barium ions imitate acetylcholine? Brain Res. 206: 244–250.PubMedGoogle Scholar
  45. Coyle, J. T., Prince, D. L., and DeLong, M. R., 1983, Alzheimer’s disease: A disorder of cortical cholinergic innervation, Science 219: 1184–1190.PubMedGoogle Scholar
  46. Crawford, J. M., 1970, The sensitivity of cortical neurones to acidic amino acids and acetylcholine, Brain Res. 17: 287–296.PubMedGoogle Scholar
  47. Crawford, J. M., and Curtis, D. R., 1966. Pharmacological studies on feline Betz cells, J. Physiol. (Land.) 186: 121–138.Google Scholar
  48. Crawford, J. M., Curtis, D. R., Voorhoeve, P. E., and Wilson, V. J., 1966, Acetylcholine sensitivity of cerebellar neurones in the cat, J. Physiol. (Lond.) 186: 139–165.Google Scholar
  49. Curtis, D. R., and Eccles, R. M., 1958, The excitation of Renshaw cells by pharmacological agents applied electrophoretically, J. Physiol (Lond.) 141: 435–445.Google Scholar
  50. Curtis, D. R., and Ryall, R. W., 1966b, The acetylcholine receptors of Renshaw cells, Exp. Brain Res. 2: 66–80.Google Scholar
  51. Curtis, D. R., and Ryall, R. W., 1966b, The acetylcholine receptors of Renshaw cells, Ex. Brain Res. 2: 66–80.Google Scholar
  52. Dale, H. H., 1938, Acetylcholine as a chemical transmitter of the effects of nerve impulses, J. Mt. Sinai Hosp. 4: 401–429.Google Scholar
  53. Davis, R., and Vaughan, P. C., 1969, Pharmacological properties of feline red nucleus, Int. J. Neuropharmacol. 8: 475–488.PubMedGoogle Scholar
  54. Dingledine, R., and Kelly, J. S., 1977, Brain stem stimulation and the acetylcholine-evoked inhibition of neurones in the feline nucleus reticularis thalami, J. Physiol. (Land.) 271: 135–154.Google Scholar
  55. Dionne, V. E., 1976, Characterization of drug iontophoresis with a fast micro assay technique, Biophys. J. 16: 705–717.PubMedGoogle Scholar
  56. Dionne, V. E., Steinbach, J. H., and Stevens, C. F., 1978, An analysis of the dose response relationship at voltage-clamped frog neuromuscular junctions, J. Physiol. (Land.) 281: 421–444.Google Scholar
  57. Dodd, J., and Horn, J., 1983, Muscarinic inhibition of sympathetic C neurones in the bullfrog, J. Physiol. (Land.) 334: 271–291.Google Scholar
  58. Dodd, J., Dingledine, R., and Kelly, J. S., 1981, The excitatory action of acetylcholine on hippocampal neurones of the guinea pig and rat maintained in vitro, Brain Res. 207: 109–127.PubMedGoogle Scholar
  59. Duggan, A. W., and Hall, J. G., 1975, Inhibition of thalamic neurones by acetylcholine, Brain Res. 100: 445–449.PubMedGoogle Scholar
  60. Dun, N. J., Kaibara, K., and Karczmar, A. G. 1978, Muscarinic and cGMP induced membrane potential changes: Differences in electrogenic mechanisms, Brain Res. 150: 658–661.PubMedGoogle Scholar
  61. Eccles, R. M., and Libel, B., 1961, Origin and blockade of the synaptic responses of curarized sympathetic ganglia, J. Physiol. (Lond.) 157: 484–503.Google Scholar
  62. Edwards, S. B., and de Olmos, J. S., 1976, Autoradiographic studies of the projections of the midbrain reticular formation: Ascending projections of nucleus cuneiformis, J. Comp. Neurol. 165: 417–432.PubMedGoogle Scholar
  63. Ferrendelli, J., Steiner, A., McDougal, D., and Kipnis, D., 1970, The effect of oxotremorine and atropine on cGMP and cAMP levels in mouse cerebral cortex and cerebellum, Biochem. Biophys. Res. Commun. 41: 1061–1067.Google Scholar
  64. Fibiger, H. G., 1982, The organization and some projections of cholinergic neurons of the mammalian forebrain, Brain Res. 257: 327–388.PubMedGoogle Scholar
  65. Fisher, S. K., Klinger, P. D., and Agranoff, B. W., 1983, Muscarinic agonist binding and phospholipid turnover in brain, J. Biol. Chem. 258: 7358–7363.PubMedGoogle Scholar
  66. Fosbraey, P., and Johnson, E. S., 1980, Release-modulating acetylcholine receptors on cholinergic neurones of the guinea pig ileum, Br. J. Pharmacol. 68: 289–300.PubMedGoogle Scholar
  67. Gallagher, J. P., and Shinnick-Gallagher, P., 1978, Electrophysiological effects of nucleotides injected intracellularly into rat sympathetic ganglion cells, in: Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System ( R. W. Ryall, and J. S. Kelly, eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 152–154.Google Scholar
  68. George, W., J., Polson, J. B., O’Toole, A. G., and Goldberg, N. D., 1970, Elevation of guanosine 3’,5’-cyclic phosphate in rat heart after perfusion with acetylcholine, Proc. Natl. Acad. Sci. U.S.A. 66: 398–403.Google Scholar
  69. Ginsborg, B. L., House, C. R., and Silinsky, E. M., 1974, Conductance changes associated with secretory potential in the cockroach salivary gland, J. Physiol. (Lond.) 263: 723–731.Google Scholar
  70. Haas, H. L., 1982, Cholinergic disinhibition in hippocampal slices of the rat, Brain Res. 233: 200–204.PubMedGoogle Scholar
  71. Hadhazy, P., and Szerb, J. C., 1977, The effect of cholinergic drugs on [3H]acetylcholine release from slices of rat hippocampus, striatum and cortex, Brain Res. 123: 311–322.PubMedGoogle Scholar
  72. Halliwell, J. V., and Adams, P. R., 1982, Voltage clamp analysis of muscarinic excitation in hippocampal neurons, Brain Res. 250: 71–92.PubMedGoogle Scholar
  73. Hamill, O. P., and Sakmann, B., 1981, Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells, Nature 294: 462–464.PubMedGoogle Scholar
  74. Hashiguchi, T., Ushiyama, N. S., Kobayashi, H., and Libet, B., 1978, Does cyclic GMP mediate the slow excitatory synaptic potential in sympathetic ganglia? Nature (Lund.) 271: 267–268.Google Scholar
  75. Headley, P. M., Lodge, D., and Biscoe, T. J., 1975, Acetylcholine receptors on Renshaw cells of the rat, Eur. J. Pharmacol. 30: 252–259.PubMedGoogle Scholar
  76. Herrling, P. L., 1981, The effect of carbachol and acetylcholine on fornix evoked ipsps recorded from cat hippocampal pyramidal cells in situ, J. Physiol. (Lund.) 318: 26.Google Scholar
  77. Hill-Smith, I., and Purves, R. D., 1978, Synaptic delay in the heart: An iontophoretic study, J. Physiol. (Lond.) 279: 31–54.Google Scholar
  78. Hotson, J. R., and Prince, D. A., 1980, A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons J. Neurophysiol. 43: 409–419.PubMedGoogle Scholar
  79. Hotson, J. R., Prince, D. A., and Schwartzkroin, P. A., 1979, Anomalous inward rectification in hippocampal neurons, J. Neurophysiol. 42: 889–895.PubMedGoogle Scholar
  80. Hounsgaard, J., 1978, Presynaptic inhibitory action of acetylcholine in area CA1 of the hippocampus, Ex. Neurol. 62: 787–797.Google Scholar
  81. Jacobson, M. D., Wusteman, M., and Downes, C. P., 1985, Muscarinic receptors and hydrolysis of inositol phospholipids in rat cerebral cortex and parotid gland, J. Neurochem. 44: 465–472.PubMedGoogle Scholar
  82. Johnson, S. M., Katayama, Y., Morita, K., and North, R. A., 1981, Mediators of slow synaptic potentials in the myenteric plexus of the guinea pig ileum, J. Physiol. (Lond.) 320: 175–186.Google Scholar
  83. Jordan, L. M., and Phillis, J. W., 1972, Acetylcholine inhibition in the intact and chronically isolated cerebral cortex, Br. J. Pharmacol. Chemother. 45: 584–595.Google Scholar
  84. Katasaka, K., Nakamura, Y., and Hassler, R., 1973, Habenulointerpenduncular tract: A possible cholinergic neuron in rat brain, Brain Res. 62: 264–267.Google Scholar
  85. Katayama, Y. and Nishi, S. 1982, Voltage-clamp analysis of peptidergic slow depolarizations in bullfrog sympathetic ganglion cells, J. Physiol. (Lund.) 333: 305–315.Google Scholar
  86. Katz, B., and Miledi, R., 1972, The statistical nature of the acetylcholine potential and its molecular components, J. Physiol. (Lund.) 224: 665–699.Google Scholar
  87. Kebabian, J., Steiner, A., and Greengard, P., 1975, Muscarinic cholinergic regulation of cyclic guanosine 3’5’-monophosphate in autonomic ganglia: Possible role in synaptic transmission, J. Pharmacol. Exp. Ther. 193: 474–487.PubMedGoogle Scholar
  88. Kelly, J. S., 1975, Microiontophoretic application of drugs onto single neurones, in: Handbook of Psychopharmacology, Vol. 2 ( L. L. Iversen, S. D. Iversen, and S. Snyder, eds.), Plenum Press, New York, pp. 29–67.Google Scholar
  89. Kelly, J. S., Krnjevic, K., Morris, M. E., and Kim, G. K. W., 1969, Anionic permeability of cortical neurones, Exp. Brain. Res. 7: 11–31.Google Scholar
  90. Kilbinger, H., and Wessler, I., 1980, Inhibition of acetylcholine of the stimulation evoked release of]3H]-acetylcholine from the guinea-pig myenteric plexus, Neuroscience 5: 1331–1340.PubMedGoogle Scholar
  91. Kimura, H., McGeer, P. L., Peng, J. H., and McGeer, E. G., 1980, Choline acetyltransferase containing neurons in rodent brain demonstrated by immunohistochemistry. Science 208: 1057–1059.PubMedGoogle Scholar
  92. King, K. T., and Ryall, R. W., 1981, A re-evaluation of acetylcholine receptors on feline Renshaw cells, Br. J. Pharmacol. 73: 455–460.PubMedGoogle Scholar
  93. Kobayashi, H., and Libet, B., 1968, Generation of slow postsynaptic potential without increases in ionic conductance, Proc. Natl. Acad. Sci. U.S.A. 69: 1304–1311.Google Scholar
  94. Kobayashi, R. M., Palkovits, M., Hruska, R. E., Rothschild, R., and Yamamura, H. I., 1978, Regional distribution of muscarinic cholinergic receptors in rat brain, Brain Res. 154: 13–23.PubMedGoogle Scholar
  95. Kostyuk, P. G., and Krishtal, O. A., 1977, Separation of sodium and calcium currents in the somatic membrane of mollusc neurones, J. Physiol. (I.ond.) 270: 569–580.Google Scholar
  96. Krnjevic, K., 1969, Central cholinergic pathways, Fed. Proc. 28: 113–120.Google Scholar
  97. Krnjevic, K., 1974, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54: 418–540.Google Scholar
  98. Krnjevic, K., and Lisiewicz, A., 1972, Injections of calcium ions into spinal motoneurons, J. Physiol. (Lond.) 225: 363–390.Google Scholar
  99. Krnjevic, K., and Phillis, J. W., 1963a, Acetylcholine sensitive cells in the central cortex, J. Physiol. (Lond.) 166: 296–327.Google Scholar
  100. Krnjevic, K., and Phillis, J. W., 1963b, Pharmacological properties of acetylcholine-sensitive cells in the cerebral cortex, J. Physiol. (Lund.) 166: 328–350.Google Scholar
  101. Krnjevic, K., and Ropert, N., 1981, Septo-hippocampal pathway modulates hippocampal activity by a cholinergic mechanism. Can. J. Physiol. Pharmacol. 59: 911–914.PubMedGoogle Scholar
  102. Krnjevic, K., and Van Meter, W. G., 1976, Cyclic nucleotides in spinal cells, Can. J. Physiol. Pharmacol. 54: 416–421.PubMedGoogle Scholar
  103. Krnjevic, K., Pumain, R., and Renaud, L., 1971, The mechanism of excitation by acetylcholine in the cerebral cortex, J. Physiol. (Lund.) 215: 247–268.Google Scholar
  104. Krnjevic, K., Puil, E., and Werman, R., 1976, Is cyclic guanosine monophosphate the internal ‘second messenger’ for cholinergic actions on central neurons ? Can. J. Physiol. Pharmacol. 54: 172–176.PubMedGoogle Scholar
  105. Krnjevic, K., Reiffenstein, R. J., and Ropert, N., 1981, Disinhibitory action of acetylcholine in the rat’s hippocampus: Extracellular observations, Neuroscience 6: 2465–2474.PubMedGoogle Scholar
  106. Kuba, K., and Koketsu, K., 1974, Ionic mechanism of the slow excitatory postsynaptic potential in bullfrog sympathetic ganglion cells, Brain Res. 81: 338–342.PubMedGoogle Scholar
  107. Kuba, K., and Koketsu, K., 1976, Analysis of the slow excitatory postsynaptic potential in bullfrog sympathetic ganglion cells, Jpn. J. Physiol. 26: 647–664.Google Scholar
  108. Kuffler, S. W., and Sejnowski, T. J., 1983, Peptidergic and muscarinic excitation at amphibian sympathetic synapses, J. Physiol. (Lond.) 341: 257–278.Google Scholar
  109. Kuhar, M. J., DeHaven, R. N., Yamamura, H. I., Rommelspacher, H., and Simon, J. R., 1975, Further evidence for cholinergic-habenulo-interpeduncular neurons: Pharmacologic and functional characteristics, Brain Res. 97: 265–275.PubMedGoogle Scholar
  110. Kuhar, M. J., and Yamamura, H. I., 1976, Localization of cholinergic muscarinic receptors in rat brain by light microscopic radioautography, Brain Res. 110: 229–243.PubMedGoogle Scholar
  111. Lake, N., 1973, Studies of the habenulo-interpeduncular pathway in cats, Exp. Neurol. 41: 113–132.Google Scholar
  112. Lamarre, Y., Filion, M., and Cordeau, J. P., 1971, Neuronal discharges of the ventrolateral nucleus of the thalamus during sleep and wakefulness in the cat. I. Spontaneous activity, Exp. Brain Res. 12: 480–498.PubMedGoogle Scholar
  113. Lebranth, C. S., Brownstein, M., Zabrosaky, L., Jaranyi, Z. S., and Palkovits, M., 1975, Morphological and biochemical changes in the rat interpeduncular nucleus following the tran-section of the habenulo-interpeduncular tract, Brain Res. 99: 124–128.Google Scholar
  114. Lee, T.-P., Kuo, J. F., and Greengard, P., 1972, Role of muscarinic cholinergic receptors in regulation of guanosine 3’:5’-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle, Proc. Natl. Acad. Sci. USA 69: 3287–3291.PubMedGoogle Scholar
  115. Legge, K. F., Randió, M., and Straughan, D. W., 1966, The pharmacology of neurones in the pyriform cortex, Br. J. Pharmacol. 26: 87–107.Google Scholar
  116. Lehman, J., and Langer, S. Z., 1982, Muscarinic receptors on dopamine terminals in the cat caudate nucleus: Neuromodulation of [3H]dopamine release in vitro by endogenous acetylcholine, Brain Res. 248: 61–69.Google Scholar
  117. Lewis, P. R., Shute, C. C. D., and Silver, A., 1967, Confirmation from choline acetylase of a massive cholinergic innervation to the rat hippocampus, J. Physiol. (Land.) 191: 215–224.Google Scholar
  118. Lynch, G., Rose, G., and Gall, C., 1978, Anatomical and functional aspects of the septo-hippocampal projections, in: Functions of the Septo-Hippocampal System, CIBA Foundation Symposium 58 (new series) ( K. Elliot and J. Whelan, eds.) Elsevier, Amsterdam, pp. 5–20.Google Scholar
  119. McAfee, D. A., and Greengard, P., 1972, Adenosine 3’,5’-monophosphate: Electrophysiological evidence for a role in synaptic transmission, Science 78: 310–312.Google Scholar
  120. McCance, I., 1972, The role of acetylcholine in the intracerebellar nuclei of the cat, Brain Res. 48: 265–279.PubMedGoogle Scholar
  121. McCance, I., and Phillis, J. W., 1964, The action of acetylcholine on cells in cat cerebellar cortex, Experientia 20: 217–218.PubMedGoogle Scholar
  122. McLennan, H., 1970, Inhibition of long duration in the cerebral cortex, A quantitative difference between excitatory amino acids, Exp. Brain Res. 10: 417–426.Google Scholar
  123. McLennan, H., and York, D. H., 1966, Cholinergic mechanisms in the caudate nucleus, J. Physiol. (Lond.) 187: 163–175.Google Scholar
  124. Magleby, K. L., and Stevens, C. F., 1982, A quantitative description of end-plate currents, J. Physiol. (Lond.) 223: 173–197.Google Scholar
  125. Meech, R. W., 1978, Calcium-dependent potassium activation in nervous tissues, Ann. Rev. Biophys. Bioeng. 7: 1–18.Google Scholar
  126. Mesulam, M. M., Mufson, E. J., Wainer, B. H., and Levey, A. I., 1983, Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1-Ch6), Neuroscience 10: 1185–1201.PubMedGoogle Scholar
  127. Michell, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochem. Biophys. Acta. 415: 81–147.Google Scholar
  128. Morita, K., North, R. A., and Tokimasa, T., 1982a, Muscarinic agonists inactivate potassium conductance of guinea-pig myenteric neurones, J. Physiol. (Land.) 333: 125–139.Google Scholar
  129. Morita, K., North, R. A., and Tokimasa, T., 1982b, Muscarinic presynaptic inhibition of synaptic transmission in myenteric plexus of guinea-pig ileum, J. Physiol. (Land.) 333: 141–149.Google Scholar
  130. Mukhametov, L. M., Rizzolatti, G., and Tradardi, V., 1970, Spontaneous activity of neurones of nucleus reticularis thalami in freely moving cats, J. Physiol. (Lond.) 210: 651–667.Google Scholar
  131. Niedergerke, R., and Page, S., 1977, Analysis of catecholamine effects in single atrial trabeculae of the frog heart, Proc. R. Soc. B. 197: 333–362.Google Scholar
  132. Nishi, S., 1974, Ganglionic transmission, in: The Peripheral Nervous System ( J. I. Hubbard, ed.), Plenum Press, New York, pp. 225–255.Google Scholar
  133. Nishi, S., and Koketsu, K., 1960, Electrical properties and activities of single sympathetic neurons in frogs, J. Cell. Comp. Physiol. 55: 15–30.PubMedGoogle Scholar
  134. Pearson, R. C. A., Gatter, K. C., Brodal, P., and Powell, T. P. S., 1983, The projection of the basal nucleus of meynert upon the neocortex in the monkey, Brain Res. 259: 132–136.PubMedGoogle Scholar
  135. Peng, H. B., Cheng, P.-C., and Luther, P. W., 1981, Formation of ACh receptor clusters induced by positively charged latex beads, Nature 292: 831–834.PubMedGoogle Scholar
  136. Pepeu, G., 1983, Brain acetylcholine: An inventory of our knowledge on the 50th anniversary of its discovery, Trends Pharmacol. Sci. 4: 416–418.Google Scholar
  137. Phillis, J. W., 1971, The pharmacology of thalamic and geniculate neurones, Int. Rev. Neurobiol. 14: 1–48.PubMedGoogle Scholar
  138. Phillis, J. W., and York, D. H., 1967a, Cholinergic inhibition in the cerebral cortex, Brain Res. 5: 517–520.Google Scholar
  139. Phillis, J W, and York, D. H., 1967b, Strychnine block of neuronal and drug-induced inhibition in the cerebral cortex, Nature 216: 922–923.Google Scholar
  140. Phillis, J. W., and York, D. H., 1968, Pharmacological studies on a cholinergic inhibition in the cerebral cortex, Brain Res. 10: 297–306.PubMedGoogle Scholar
  141. Phillis, J. W., Tebècis, A. K., and York, D. H., 1967, A study of cholinoceptive cells in the lateral geniculate nucleus, J. Physiol. (Lund.) 192: 695–713.Google Scholar
  142. Phillis, J. W., Kosopolous, G. K., and Limacher, J. J., 1974, Depression of cortico-spinal cells by various purines and pyrimidines, Can. J. Physiol. Pharmacol. 52: 1226–1229.PubMedGoogle Scholar
  143. Polak, R. L., 1970, An analysis of the stimulating action of atropine on release and synthesis of acetylcholine in cortical slices from rat brain, in: Drugs and Cholinergic Mechanism in the CNS ( E. Heilbronn and A. Winter, eds.), Forsvarets Forskningsanstalt, Stockholm, pp. 323–338.Google Scholar
  144. Pong, S. F., and Graham, L. T., 1972, N-Methyl bicuculline, a convulsant more potent than bicuculline, Brain Res. 42: 486–490.PubMedGoogle Scholar
  145. Purpura, D. P., McMurtry, J. C., Maekawa, R., 1966, Synaptic events in ventrolateral neurons during suppression of recruitory responses by brain stem reticular stimulation, Brain Res. 1: 63.PubMedGoogle Scholar
  146. Purves, R. D., 1974, Muscarinic excitation: A microelectric study on cultured muscle cells, Brit. J. Pharmacol. 52: 77–86.Google Scholar
  147. Purves, R. D., 1977, The time course of cellular responses to iontophoretically applied drugs, J. Theoret. Biol. 65: 327–344.Google Scholar
  148. Randic, M., Siminoff, R., and Straughan, D. W., 1964, Acetylcholine depression of cortical neurons, Exp. Neurol. 9: 236–242.Google Scholar
  149. Rang, H. P., 1981, The characteristics of synaptic currents and responses to acetylcholine of rat submandibular ganglion cells, J. Physiol. 311: 23–55.PubMedGoogle Scholar
  150. Rogawski, M. A., and Aghajanian, G. K., 1982, Activation of lateral geniculate neurons by locus coeruleus or dorsalinoradrenergic bundle stimulation: Selective blockade by the alpha,adrenoceptor antagonist prazosin, Brain Res. 250: 31–39.PubMedGoogle Scholar
  151. Sachs, F., 1983, Is the acetylcholine receptor a unit-conductance channel? in: Single-Channel Recording ( B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 365–376.Google Scholar
  152. Sakmann, B., Noma, A., and Trautwein, W., 1983, Acetylcholine activation of single muscarinic K` channels in isolated pacemaker cells of the mammalian heart, Nature 303: 250–253.PubMedGoogle Scholar
  153. Salmoiraghi, G. C., and Stefanis, C. N., 1967, A critique of iontophoretic studies of central nervous system neurons, Int. Rev. Neurobiol. 10: 1–30.PubMedGoogle Scholar
  154. Salmoiraghi, G. C., and Steiner, F. A., 1963, Acetylcholine sensitivity of cat’s medullary neurons, J. Neurophysiol. 26: 581–597.PubMedGoogle Scholar
  155. Sawynok, J., and Jhamandas, K., 1977, Muscarinic feedback inhibition of acetylcholine release from the myenteric plexus in the guinea-pig ileum and its status after chronic exposure to morphine, Can J. Physiol. Pharmacol. 55: 909–916.Google Scholar
  156. Schiebel, M. E., and Schiebel, A. B., 1967, Structural organization of nonspecific thalamic nuclei and their projection towards cortex, Brain Res. 6: 60–94.Google Scholar
  157. Schlag, J., and Waszak, M., 1971, Electrophysiological properties of units of the thalami reticular complex, Exp. Neurol. 32: 79–97.Google Scholar
  158. Schulman, J. A., and Weight, F. F., 1976, Synaptic transmission: Long lasting potentiation by a postsynaptic mechanism, Science 194: 1437–1439.PubMedGoogle Scholar
  159. Schwartzkroin, P. A., 1975, Characteristics of CA1 neurons recorded intracellularly in the hippocampal slice, Brain Res. 85: 423–435.PubMedGoogle Scholar
  160. Segal, M., 1978, The acetylcholine receptor in the rat hippocampus: Nicotinic, muscarinic or both? Neuropharmacology 17: 619–623.PubMedGoogle Scholar
  161. Soejima, M., and Noma, A., 1984, Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells, Pflügers Arch. 400: 424–431.PubMedGoogle Scholar
  162. Shepherd, J. T., Lorenz, R. R., Tyce, G. M., and Vanhoutte, P. M., 1978, Acetylcholine-inhibition of transmitter release from adrenergic nerve terminals mediated by muscarinic receptors, Fed. Proc. 37: 191–194.Google Scholar
  163. Shute, C. C. D., and Lewis, P. R., 1967, The ascending cholinergic reticular system: Neocortical, olfactory, and subcortical projections, Brain 90: 497–520.PubMedGoogle Scholar
  164. Singer, W., 1973, The effect of mesencephalic reticular stimulation on intracellular potentials of cat geniculate neurons, Brain Res. 61: 35–54.PubMedGoogle Scholar
  165. Spehlmann, R., 1963, Acetylcholine and prostigmine electrophoresis at visual cortical neurons, J. Neurophysiol. 26: 127–139.PubMedGoogle Scholar
  166. Steriade, M., 1970, Ascending control of thalamic and cortical responsiveness, Int. J. Neurobiol. 12: 87–144.Google Scholar
  167. Stone, T. W., 1972, Cholinergic mechanisms in the rat somatosensory cerebral cortex, J. Physiol. (Lund.) 225: 485–499.Google Scholar
  168. Storm-Mathisen, J., 1975, Choline acetyltransferase and acetylcholine in fascia dentata following lesion of the entorhinal afferents, Brain Res. 80: 181–197.Google Scholar
  169. Storm-Mathisen, J., 1977, Localization of transmitter candidates in the brain: The hippocampal formation as a model, Prog. Neurobiol. 8: 119–181.Google Scholar
  170. Straschill, M., and Perwein, J., 1971, Effect of iontophoretically applied biogenic amines and of cholinomimetic substances on neurons in the superior colliculus and mesencephalic reticular formation of the cat, Arch. Cres. Physiol. 324: 43–55.Google Scholar
  171. Symmes, D., and Anderson, K. V., 1967, Reticular modulation of higher auditory centers in monkey, Exp. Neurol. 18: 161–176.Google Scholar
  172. Szerb, J. C., 1980, Effects of low calcium and of oxotremorine on the kinetics of the evoked release of [3H]-acetylcholine from the guinea-pig myenteric plexus: Comparison with morphine, Naunyn Schmiedebergs. Arch. Pharmacol. 311: 119–127.Google Scholar
  173. Takagi, M., and Yamamoto, C., 1978, Suppressing action of cholinergic agents on synaptic transmission in the corpus striatum of rats, Exp. Neurol. 62: 433–443.Google Scholar
  174. Takeuchi, A., and Takeuchi, N., 1959, Active phase of frog’s end-plate potential, J. Neurophysiol. 22: 395–411.PubMedGoogle Scholar
  175. Tebécis, A. K., 1972, Cholinergic and non-cholinergic transmission in the medial geniculate nucleus of the cat, J. Physiol. (Lond.), 226: 153–172.Google Scholar
  176. Tosaka, T., Chichire, S., and Libet, B., 1968, Intracellular analysis of slow inhibitory and excitatory postsynaptic potentials in sympathetic ganglia of the frog, J. Neurophysiol. 31: 396–409.PubMedGoogle Scholar
  177. Trautman, A., and Marty, A., 1984, Activation of Ca-dependent K channels by carbamoylcholine in rat lacrimal glands, Proc. Natl. Acad. Sci. USA 81: 611–615.Google Scholar
  178. Vijayan, V. K., 1979, Distribution of cholinergic neurotransmitter enzymes in the hippocampus and the dentate gyrus of the adult and the developing mouse, Neuroscience 4: 137.Google Scholar
  179. Wamsley, J. K., Lewis, M. S., Young, W. S., III, and Kuhar, M. J., 1981, Autoradiographic localization of muscarinic cholinergic receptors in rat brainstem, J. Neurosci. 1: 176–191.PubMedGoogle Scholar
  180. Waszak, M., 1974, Firing pattern of neurones in the rostral and ventral part of nucleus reticularis thalami during EEG-spindles, Exp. Neurol. 43: 38–59.Google Scholar
  181. Weight, F. F., and Padjen, A., 1973, Acetylcholine and slow synaptic inhibition in frog sympathetic ganglion cells, Brain Res. 55: 225–228.PubMedGoogle Scholar
  182. Weight, F. F., and Smith, P. A., 1980, Small intensely fluorescent cells and the generation of slow postsynaptic inhibition in sympathetic ganglia, in: Histochemistry and Cell Biology of Autonomic Neurons, SIF Cells, and Paraneurons, ( O. Eränkö, S. Soinila, and H. Päivärinta, eds.), Raven Press, New York, pp. 159–171.Google Scholar
  183. Weight, F. F, and Votava, J., 1970, Slow synaptic excitation in sympathetic ganglion cells: Evidence for synaptic inactivation of potassium conductance, Science 170: 755–758.PubMedGoogle Scholar
  184. Weight, F. F. and Salmoiraghi, G. C., 1966, Response of spinal cord interneurons to acetylcholine, norepinephrine and serotonin administered by microelectrophoresis, J. Pharmacol. Exp. Ther. 153: 420–427.PubMedGoogle Scholar
  185. Weight, F. F., Petzold, G., and Greengard, P., 1974, Guanosine 3’5’-monophosphate in sympathetic ganglia; increase associated with synaptic transmission, Science 186: 942–944.PubMedGoogle Scholar
  186. Wilson, W., and Goldner, M. A., 1975, Voltage-clamping with a single microelectrode, J. Neurobiol. 4: 411–422.Google Scholar
  187. Wong, R. K. S., and Prince, D. A., 1981, Afterpotential generation in hippocampal pyramidal cells, J. Neurophysiol. 45: 86–97.PubMedGoogle Scholar
  188. Woody, C. D., Swartz, B. E., and Gruen, E., 1978, Effects of acetylcholine and cyclic GMP on input resistance of cortical neurones in awake cats, Brain Res. 158: 373–395.PubMedGoogle Scholar
  189. Yamamoto, C., and Kawai, N., 1967, Presynaptic action of acetylcholine in thin sections from the guinea pig dentate gyrus in vitro, Exp. Neurol. 19: 176–187.Google Scholar
  190. Yavari, P., and Weight, F. F., 1981, Effect of phentolamine on synaptic transmission in bullfrog synpathetic ganglia, Neurosci. Abst. 7: 807.Google Scholar
  191. Yingling, C. F., and Skinner, J. F., 1975, Regulation of unit activity in nucleus reticularis thalami by the mesencephalic reticular formation and the frontal granular cortex. Electroenceph. Clin. Neurophysiol. 39: 635–642.Google Scholar
  192. Zieglgänsberger, W., and Reiter, C., 1974, A cholinergic mechanism in the spinal cord of cats, Neuropharmacology 13: 519–527.PubMedGoogle Scholar
  193. Zieglgänsberger, W., and Bayerl, H., 1976, The mechanism of inhibition of neuronal activity by opiates in the spinal cord of cat, Brain Res. 115: 111–128.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • John S. Kelly
  • Michael A. Rogawski

There are no affiliations available

Personalised recommendations