Advertisement

Oxytocin and Vasopressin

  • Michel Mühlethaler
  • Mario Raggenbass
  • J. J. Dreifuss

Abstract

Toward the end of the 19th century, the functions of most endocrine glands were revealed by a combination of surgical removal and of injection of crude extracts. In particular, the intravenous injection of a crude pituitary extract yielded a clear-cut and measurable rise in blood pressure. In 1898, it was shown that this effect was due to components present only in the posterior (“nervous”) subdivision of the gland. In little more than a decade, other actions of posterior pituitary extracts were revealed: the contraction of uterine smooth muscle in late pregnancy and the stimulation of milk ejection during lactation. An effect of the extract on urine output was also noticed at an early date; however, it took several years until it was recognized that the physiological effect was to induce an antidiuresis (for historical references, see Heller, 1974). Vasopressin has been shown in recent years to exert several endocrine actions in addition to its classical antidiuretic and hypertensive effects. Thus, for example, it promotes glycogen breakdown by the liver, acts on spermatogenesis, causes platelet aggregation, and raises the level of antihemophilic globulin in blood.

Keywords

Paraventricular Nucleus Supraoptic Nucleus Oxytocin Receptor Dorsal Motor Nucleus Magnocellular Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, H., Inoue, M., Matsuo, T., and Ogata, N., 1983, The effects of vasopressin on electrical activity in the guinea-pig supraoptic nucleus in vitro, J. Physol. (Lond.) 337: 665–685.Google Scholar
  2. Barberis, C., 1983, [3H] vasopressin binding to rat hippocampal synaptic plasma membrane. Kinetic and pharmacological characterization, FEBS Lett. 162:400–405.PubMedCrossRefGoogle Scholar
  3. Bargmann, W., and Scharrer, E., 1951, The site of origin of the hormones of the posterior pituitary, Am. Sci. 39: 255–259.Google Scholar
  4. Barker, J. L., 1977, Physiological roles of peptides in the nervous system, in: Peptides in Neurobiology ( H. Gainer, ed.) Plenum Press, New York, pp. 295–343.CrossRefGoogle Scholar
  5. Barker, J. F., and Smith, T. C., 1976, Peptide regulation of neuronal membrane properties, Brain Res. 103: 167–170.PubMedCrossRefGoogle Scholar
  6. Barry, J., 1961, Recherches morphologiques et expérimentales sur la glande diencéphalique et l’appariel hypothalamo-hypophysaire, Annales Scientifiques de l’Université deBesanfon, Zoologie et Physiologie, 2me série, fasc. 15, 135 pp.Google Scholar
  7. Biegon, A., Terlou, M., Voorhuis, T. D., and de Kloet, E. R., 1984, Arginine-vasopressin binding sites in rat brain: A quantitative autoradiographic study, Neurosci. Lett. 44: 229–234.Google Scholar
  8. Brownstein, M. J., 1983, Biosynthesis of vasopressin and oxytocin, Annu. Rev. Physiol. 45: 129–135.CrossRefGoogle Scholar
  9. Buijs, R. M., 1983, Vasopressin and oxytocin—their role in neurotransmission, Pharmacol. Ther. 22: 127–141.Google Scholar
  10. Buijs, R. M., and Swaab, D. R., 1979, Immuno-electron microscopical demonstration of vasopressin and oxytocin synapses in the limbic system of the rat, Cell TissueRes. 204: 353–365.Google Scholar
  11. Buijs, R. M., and Van Heerikhuize, J. J., 1982, Vasopressin and oxytocin release in the brain—a synaptic event, Brain Res. 252: 71–76.PubMedCrossRefGoogle Scholar
  12. Charpak, S., Armstrong, W. E., Mühlethaler, M., and Dreifuss, J. J., 1984, Stimulatory action of oxytocin on neurones of the dorsal motor nucleus of the vagus nerve, Brain Res. 300: 83–89.PubMedCrossRefGoogle Scholar
  13. De Vries, G. J., and Buijs, R. M., 1983, The origin of the vasopressinergic and oxytocinergic innervation of the rat brain, with special reference to the lateral septum, Brain Res. 273: 307–317.PubMedCrossRefGoogle Scholar
  14. De Wied, D., 1980, Behavioural actions of neurohypophysial peptides, Proc. R. Soc. Lond. B. 210: 183–195.PubMedCrossRefGoogle Scholar
  15. Du Vigneaud, V., 1956, Trails of sulfur research: From insulin to oxytocin, Science 123: 967–974.CrossRefGoogle Scholar
  16. Dyball, R. E. J., and Paterson, T., 1983, Neurohypophysial hormones and brain function: The neurophysiological effects of oxytocin and vasopressin, Pharmacol. Ther. 20: 419–443.Google Scholar
  17. Freund-Mercier, M. J., and Richard, P., 1981, Excitatory effects of intraventricular injections of oxytocin on the milk-ejection reflex in the rat, Neurosci. Lett. 23: 193–198.Google Scholar
  18. Gilbey, M. P., Coote, J. H., Fleetwood-Walker, S., and Peterson, D. F., 1982, The influence of the paraventriculo-spinal pathway, and oxytocin and vasopressin on sympathetic preganglionic neurones, Brain Res. 251: 283–296.PubMedCrossRefGoogle Scholar
  19. Heller, H., 1974, History of neurohypophysial research, in: Handbook of Physiology, Section 7, Endocrinology, vol. IV, part 1, ( E. Knobil and W. H. Sawyer, eds.) American Physiological Society, Washington, D.C., pp 103–116.Google Scholar
  20. Ivell, R., Schmale, H., and Richter, D., 1983, Vasopressin and oxytocin precursors as model preprohormones, Neuroendocrinology 37: 235–239.PubMedCrossRefGoogle Scholar
  21. Jard, S., 1983, Vasopressin isoreceptors in mammals: Relation to cyclic AMP-dependent and cyclic AMP-independent transduction mechanisms, Curr. Top. in Membr. Trans. 19: 255–285.CrossRefGoogle Scholar
  22. Joëls, M., and Urban, I. J. A., 1982, The effect of microiontophoretically applied vasopressin and oxytocin on single neurones in the septum and dorsal hippocampus of the rat, Neurosci. Lett. 33: 79–84.Google Scholar
  23. Kandel, E., 1964, Electrical properties of hypothalamic neuroendocrine cells, J. Gen. Physiol. 47: 691–717.PubMedCrossRefGoogle Scholar
  24. Levitan, I. B., Harmar, A. J., and Adams, W. B., 1979, Synaptic and hormonal modulation of a neuronal oscillator: A search for molecular mechanisms, J. Exp. Biol. 81: 131–151.PubMedGoogle Scholar
  25. Michell, R. H., Kirk, C. J., and Billah, M. M., 1979, Hormonal stimulation of phosphatidylinositol breakdown with particular reference to the hepatic effects of vasopressin, Biochem. Soc. Trans. 7: 86–89.Google Scholar
  26. Moss, R. L., Dyball, R. E. J., and Cross, B. A., 1972, Excitation of antidromically identified neurosecretory cells of the paraventricular nucleus by oxytocin applied iontophoretically, Exp. Neurol. 34: 95–102.Google Scholar
  27. Morris, R., Salt, T. E., Sofroniew, M. V., and Hill, R. G., 1980, Actions of microiontophoretically applied oxytocin, and immunohistochemical localisation of oxytocin, vasopressin and neurophysin in the rat caudal medulla, Neurosci. Lett. 18: 163–168.Google Scholar
  28. Mühlethaler, M., Charpak, S., and Dreifuss, J. J., 1984a, Contrasting effects of neurohypophysial peptides on pyramidal and non-pyramidal neurones in the rat hippocampus, BrainRes. 308: 97–107.Google Scholar
  29. Mühlethaler, M., Dreifuss, J. J., and Gähwiler, B. H., 1982, Vasopressin excites hippocampal neurons, Nature 296: 749–751.PubMedCrossRefGoogle Scholar
  30. Mühlethaler, M, Raggenbass, M., and Dreifuss, J. J., 1984b, Peptides related to vasopressin in invertebrates, Experientia 40: 777–782.CrossRefGoogle Scholar
  31. Mühlethaler, M., Sawyer, W. H., Manning, M. M., and Dreifuss, J. J., 1983, Characterization of a uterine-type oxytocin receptor in the rat hippocampus, Proc. Natl. Acad. Sci. USA 80: 6713–6717.CrossRefGoogle Scholar
  32. Nicoll, R. A., and Barker, J. L., 1971, The pharmacology of recurrent inhibition in the supraoptic neurosecretory system, Brain Res. 35: 501–511.PubMedCrossRefGoogle Scholar
  33. Normanton, J. R., and Gent, J. P., 1983, Comparison of the effects of two “sleep” peptides, delta sleep-inducing peptide and arginine-vasotocin, on single neurones in the rat and rabbit brain stem, Neuroscience 8: 107–114.PubMedCrossRefGoogle Scholar
  34. Olpe, H. R., and Baltzer, V., 1981, Vasopressin activates noradrenergic neurones in the rat locus coeruleus: A microiontophoretic investigation, Eur. J. Pharmacol. 73: 377–378.CrossRefGoogle Scholar
  35. Pedersen, C. A., Ascher, J. A., Monroe, Y. L., and Prange, A. J., Jr., 1982, Oxytocin induces maternal behavior in virgin female rats, Science 216: 648–650.PubMedCrossRefGoogle Scholar
  36. Sawyer, W. H., Grzonka, Z., and Manning, M., 1981, Neurohypophysial peptides, Design of tissue specific agonists and antagonists, Mol. Cell. Endocrinol. 22: 117–134.Google Scholar
  37. Sofroniew, M. V., 1983, Morphology of vasopressin and oxytocin neurons and their central and vascular projections, in: TheNeurohypophysis: Structure Function and Control, Progress in Brain Research, Vol. 60 ( B. A. Cross and G. Leng, eds.) Elsevier, Amsterdam, pp. 101–114.CrossRefGoogle Scholar
  38. Sofroniew, M. V., and Weindl, A., 1981, Central nervous system distribution of vasopressin, oxytocin and neurophysin, in: Endogenous Peptides and Learning and Memory Processes (J. L. Martinez, R. A. Jensen, R. B. Messing, H. Rigter, and J. L. McGaugh, eds.) Academic Press, London, pp. 327–369.Google Scholar
  39. Soloff, M. S., Schroeder, B. T., Chakraborthy, J., and Pearlmutter, A. F., 1977, Characterization of oxytocin receptors in the uterus and mammary gland, Fed. Proc. 36: 1861–1866.Google Scholar
  40. Suzue, T., Yanaihara, N., and Otsuka, M., 1981, Actions of vasopressin, gastrin-releasing peptide and other peptides on neurons of newborn rat spinal cord in vitro, Neurosci. Lett. 26: 137–142.Google Scholar
  41. Swanson, L. W., and Sawchenko, P. E., 1983, Hypothalamic integration: organization of the paraventricular and supraoptic nuclei, Ann. Rev. Neurosci. 6: 269–324.CrossRefGoogle Scholar
  42. Tiberiis, B. E., McLennan, H., and Wilson, N., 1983, Neurohypophysial peptides and the hippocampus. II. Excitation of rat hippocampal neurones by oxytocin and vasopressin applied in vitro, Neuropeptides 4: 73–86.PubMedCrossRefGoogle Scholar
  43. Thornhill, J. A., Lukowiak, K., Cooper, K. E., Veale, W. L., and Edström, J. P., 1981, Arginine vasotocin, an endogenous neuropeptide of Aplysia, suppresses the gill withdrawal reflex and reduces the evoked synaptic input to central gill motor neurons, J. Neurobiol. 12: 533–544.PubMedCrossRefGoogle Scholar
  44. Van Leeuwen, F. W., and Wolters, P., 1983, Light microscopic autoradiographic localization of [3Hjarginine-vasopressin binding sites in the rat brain and kidney, Neurosci. Lett. 41: 61–66.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Michel Mühlethaler
  • Mario Raggenbass
  • J. J. Dreifuss

There are no affiliations available

Personalised recommendations