Skip to main content

Abstract

Opium derivatives have been in medical use for at least 2000 years, possibly longer than any other class of drugs. Parenteral administration of these compounds results in a multitude of pharmacological effects mediated by the central nervous system (Jaffe and Martin, 1980). The brain regions involved in these actions have been identified in some instances by local microinjection of pmole quantities of opioids. For example, profound analgesia can be elicited by microinjection of morphine into the periaqueductal gray or nucleus reticularis paragigantocellularis, but not into other nearby regions (Yaksh and Rudy, 1978; Akaike et al., 1978). Electrographic seizure activity localized to limbic structures such as the hippocampus and amygdala can be produced by microinjection of opioids into the lateral ventrical (Henricksen et al., 1978; Snead and Bearden, 1982). A primary goal of opioid research is to understand the actions of opioids on integrative activities of the nervous system, both in terms of the circuitry involved and the ionic conductance mechanisms affected by these drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, A., Shibata, T., Satoh, M., and Takagi, H., 1978, Analgesia induced by microinjection of morphine into, and electrical stimulation of the nucleus reticularis paragigantocellularis of rat medulla oblongata, Neuropharmacology 17: 775–778.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, R. K., Lund, J. P., and Puil, E., 1978, Enkephalin and substance P effects related to trigeminal pain, Can. J. Physiol. Pharmacol. 56: 216–222.

    Article  PubMed  CAS  Google Scholar 

  • Baldino, F., Beckman, A. L., and Adler, M. W., 1980, Actions, of iontophoretically applied morphine on hypothalamic thermosensitive units, Brain Res. 196: 199–208.

    Article  PubMed  CAS  Google Scholar 

  • Barker, J. L., Neale, J. H., Smith, T. G., and MacDonald, R. L., 1978, Opiate peptide modulation of amino acid responses suggests novel form of neuronal communication, Science 199: 1451–1453.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, F. E., Battenberg, E., Rossier, J., Ling, N., and Guillemin, R., 1978, Neurons containing β-endorphin in rat brain exist separately from those containing enkephalin: Immunocytochemical studies, Proc. Natl. Acad. Sci. USA 75: 1591–1595.

    Article  PubMed  CAS  Google Scholar 

  • Bostock, E., Dingledine, R., Xu, G., Chang, K. J., 1984, Mu opioid receptors participate in the excitatory effect of opiates in the hippocampal slice, J. Pharmacol. Exp. Ther. 231: 512–517.

    PubMed  CAS  Google Scholar 

  • Bowan, W. D., Gentleman, S., Herkenham, M., and Pert, C. B., 1981, Interconverting µ and S forms of the opiate receptor in striatal patches, Proc. Natl. Acad. Sci. USA 78: 4818–4822.

    Article  Google Scholar 

  • Chan-Palay, V., Ito, M., Tongroach, P., Sakurai, M., and Palay, S., 1982, Inhibitory effects of motilin, somatostatin, [Leu]enkephalin, [Met]enkephalin, and taurine on neurons of the lateral vesticular nucleus: Interactions with gamma-aminobutyric acid, Proc. Natl. Acad. Sci. USA 79: 3355–3359.

    Article  PubMed  CAS  Google Scholar 

  • Chang, K. -J., and Cuatrecasas, 1981, Heterogeneity and properties of opiate receptors, Fed. Proc. 40: 2729–2734.

    PubMed  CAS  Google Scholar 

  • Chang, K. -J., Cooper, B. R., Hazum, E., and Cuatrecasas, P., 1979, Multiple opiate receptors: Different regional distribution in the brain and differential binding of opiates and opioid peptides, Mol. Pharmacol. 16: 91–104.

    PubMed  CAS  Google Scholar 

  • Chavkin, C., James, I. F., and Goldstein, A., 1982, Dynorphin is a specific endogenous ligand of the opioid receptor, Science 215: 413–415.

    Article  PubMed  CAS  Google Scholar 

  • Cox, B. M., 1982, Endogenous opioid peptides: A guide to structures and terminology, Life Sci. 31: 1645–1658.

    Article  PubMed  CAS  Google Scholar 

  • Cox, B. M., and Chavkin, C., 1983, Comparison of dynorphin-selective kappa receptors in mouse vas deferens and guinea pig ileum. Spare receptor fraction as a determinant of potency, Mol. Pharmacol. 23: 36–43.

    PubMed  CAS  Google Scholar 

  • Denavit-Saubie, M., Champagnat, J., and Zieglgänsberger, W., 1978, Effects of opiates and methionine-enkephalin on pontine and bulbar respiratory neurones of the cat, Brain Res. 155: 55–67.

    Article  PubMed  CAS  Google Scholar 

  • Dingledine, R., 1981, Possible mechanisms of enkephalin action on hippocampal CA1 pyramidal neurons, J. Neurosci. 1: 1022–1035.

    PubMed  CAS  Google Scholar 

  • Dingledine, R., and Gjerstad, L., 1980, Reduced inhibition during epileptiform activity in the in vitro hippocampal slice, J. Physiol. (Lond.) 305: 297–313.

    CAS  Google Scholar 

  • Dingledine, R., Valentino, R. J., Bostock, E., King, M. E., and Chang, K. -J., 1983, Down-regulation of S but not opioid receptors in the hippocampal slice associated with loss of physiological response, Life Sci. 33 (sup. I): 333–336.

    Article  PubMed  CAS  Google Scholar 

  • Duggan, A. W., Davies, J., and Hall, J. G., 1976, Effects of opiate agonists and antagonists on central neurons of the cat, J. Pharmacol. Exp. Ther. 196: 107–120.

    PubMed  CAS  Google Scholar 

  • Duggan, A. W., Hall, J. G., and Headley, P. M., 1977, Suppression of transmission of nociceptive impulses by morphine: Selective effects of morphine administered in the region of the substantia nigra, Br. J. Pharmacol. 61: 65–76.

    PubMed  CAS  Google Scholar 

  • Dunlap, K., and Fischbach, G. D., 1981, Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones, J. Physiol. (Lond.) 317: 519–535.

    CAS  Google Scholar 

  • Dunwiddie, T., Mueller, A., Palmer, U., Stewart, J., and Hoffer, B., 1980, Electrophysiological interactions of enkephalins with neuronal activity in the rat hippocampus. I. Effects on pyramidal cell activity, Brain Res. 184: 311–330.

    Article  PubMed  CAS  Google Scholar 

  • Forney, E., and Klemm, W. R., 1983, Unit activity indicators of a catecholamine role in expression of morphine effects, Prog. Neuropsychopharmacol. Biol. Psychiat. 7: 73–82.

    Article  CAS  Google Scholar 

  • Frederickson, R. C. A., and Geary, L. E., 1982, Endogenous opioid peptides: Review of physiological, pharmacological and clinical aspects, Prog. Neurobiol. 19: 19–69.

    Article  PubMed  CAS  Google Scholar 

  • Frederickson, R. C. A., and Norris, F. H., 1976, Enkephalin-induced depression of single neurons in brain areas with opiate receptors-antagonism by naloxone, Science 194: 440–442.

    Article  PubMed  CAS  Google Scholar 

  • French, E. D., and Siggins, G. R., 1980, An iontophoretic survey of opioid peptide actions in the rat limbic system: In search of opiate epileptogenic mechanisms, Regulatory Peptides 1: 127–146.

    Article  PubMed  CAS  Google Scholar 

  • Gähwiler, B. H., 1980, Excitatory action of opioid peptides and opiates on cultured hippocampal pyramidal cells, Brain Res. 194: 193–203.

    Article  PubMed  Google Scholar 

  • Glazer, E. J., and Basbaum, A. I., 1983, Opioid neurons and pain modulation: an ultrastructural analysis of enkephalin in cat superficial dorsal horn, Neuroscience 10: 357–376.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, R. R., Snyder, S. H., Kuhar, M. J., and Young, W. S., 1980, Differentiation of delta and mu opiate receptor localizations by light microscopic autoradiography, Proc. Natl. Acad. Sci. USA 77: 6239–6243.

    Article  PubMed  CAS  Google Scholar 

  • Gruol, D. L., and Smith, T. G., 1981, Opiate antagonism of glycine-evoked membrane polarizations in cultured mouse spinal cord neurons, Brain Res. 223: 355–365.

    Article  PubMed  CAS  Google Scholar 

  • Gruol, D. L., Chavkin, C., Valentino, R. J., and Siggins, G. R., 1983, Dynorphin-A alters the excitability of pyramidal neurons of the rat hippocampus in vitro, Life Sci. 33 (Supp. I): 533–536.

    Article  PubMed  CAS  Google Scholar 

  • Guilbaud, G., Kayser, V., Banoist, J. M., and Gautron, M., 1983, Depressive effects of morphine and of an enkephalinase inhibitor on responses of ventro-basal thalamic neurones to noxious stimuli, Life Sci. 33 (Supp. I): 545–547.

    Article  PubMed  CAS  Google Scholar 

  • Haas, H. L., and Ryall, R. W., 1980, Is excitation by enkephalins of hippocampal neurons in the rat due to presynaptic facilitation or to disinhibition? J. Physiol. (Lond.) 308: 315–330.

    CAS  Google Scholar 

  • Haigler, H. J., 1976, Morphine: Ability to block neuronal activity evoked by a nociceptive stimulus, Life Sci. 19: 841–858.

    Article  PubMed  CAS  Google Scholar 

  • Henricksen, S. J., Bloom, F. E., McCoy, F., Ling, N., and Guillemin, R., 1978, ß-endorphin induces non-convulsive limbic seizures, Proc. Natl. Acad. Sci. USA 75: 5221–5225.

    Article  Google Scholar 

  • Herbert, E., Oates, E., Martens, G., Comb, M., Rosen, H., and Uhler, M., 1983, Generation of diversity and evolution of opioid peptides, Cold Spring Harbor Symp. Quant. Biol. 48: 375–384.

    Article  PubMed  CAS  Google Scholar 

  • Heyer, E. J., and MacDonald, R. L., 1982, Calcium-and sodium-dependent action potentials of mouse spinal cord and dorsal root ganglion neurons in cell culture, J. Neurophysiol. 47: 641–655.

    PubMed  CAS  Google Scholar 

  • Hill, R. G., and Pepper, C. M., 1978, The depression of thalamic nociceptive neurones by D-ala2, D-leu5-enkephalin, Eur. J. Pharmacol. 47: 223–225.

    Article  PubMed  CAS  Google Scholar 

  • Hill, R. G., Pepper, C. M., and Mitchell, J. F., 1976, Depression of nociceptive and other neurones in the brain by iontophoretically applied met-enkephalin, Nature 262: 604–606.

    Article  PubMed  CAS  Google Scholar 

  • Hill, R. G., Morris, R., and Sofroniew, M. V., 1983, Naloxone reversible inhibition of reticular neurones in the rat caudal medulla produced by electrical stimulation of the periaqueductal grey matter, Pain 15: 249–263.

    Article  PubMed  CAS  Google Scholar 

  • Hökfelt, T., Johansson, O., Ljundahl, A., Lundberg, J. M., and Schultzberg, M., 1980, Peptidergic neurones, Nature 284: 515–521.

    Article  PubMed  Google Scholar 

  • Hosford, D. A., and Haigler, H. J., 1980, Morphine and methionine-enkephalin: different effects on spontaneous and evoked neuronal firing in the mesencepalic reticular formation, J. Pharmacol. Exp. Ther. 213: 355–363.

    PubMed  CAS  Google Scholar 

  • Huffman, R. D., and Felpel, L. P., 1981, A microiontophoretic study of morphine on single neurons in the rat globus pallidus, Neurosci. Lett. 22: 195–199.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, S. P., Kelly, J. S., and Emson, P. C., 1980, The electron microscopic localization of methionine-enkephalin within the superficial layers (I and II) of the spinal cord, Neuroscience 5: 1871–1890.

    Article  PubMed  CAS  Google Scholar 

  • Iwatsubo, K., and Clouet, D. H., 1977, Effects of morphine and haloperidol on the electrical activity of rat nigrostriatal neurons, J. Pharmacol. Exp. Ther. 202: 429–436.

    PubMed  CAS  Google Scholar 

  • Jaffe, J. H., and Martin, W. R., 1980, Opioid analgesics and antagonists, in: The Pharmacological Basis of Therapeutics ( A. G. Gilman, L. S. Goodman, and A. Gilman, eds.), MacMillan, New York, pp. 494–534.

    Google Scholar 

  • Kerr, F. W. L., Triplett, J. N., and Beeler, G. W., 1974, Reciprocal (push-pull) effects of morphine on single units in the ventromedian and lateral hypothalamus and influences on other nuclei: with a comment on methadone effects during withdrawal from morphine, Brain Res. 74: 81–103.

    Article  PubMed  CAS  Google Scholar 

  • Korf, J., Bunney, B. S., and Aghajanian, G. K., 1974, Noradrenergic neurons: Morphine inhibition of spontaneous activity, Eur. J. Pharmacol. 25: 165–169.

    Article  PubMed  CAS  Google Scholar 

  • Kosterlitz, H. W., and Paterson, S. J., 1980, Characterization of opioid receptors in nervous tissue, Proc. R. Soc. Lond. B 210: 113–122.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H. K., Dunwiddie, T., and Hoffer, B., 1980, Electrophysiological interactions of enkephalins with neuronal circuitry in the rat hippocampus. H. Effects on interneuron excitability, Brain Res. 184: 331–342.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, R. L., and Nelson, P. G., 1978, Specific opiate-induced depression of transmitter release from dorsal root ganglion cells in culture, Science 199: 1449–1451.

    Article  PubMed  CAS  Google Scholar 

  • MacMillan, S. J., and Clarke, G., 1983, Opioid peptides have differential actions on subpopulations of arcuate neurones, Life Sci. 33 (Suppl. I): 529–532.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy, P. S., Walker, R. J., and Woodruff, G. N., 1977, Depressant actions of enkephalins on neurones in the nucleus accumbens, J. Physiol. (Lund.) 267: 40–41 P.

    Google Scholar 

  • McGinty, J. F., Henricksen, S. J., Goldstein, A., Terenius, T., and Bloom, F. E., 1983, Dynorphin is contained within hippocampal mossy fibers: Immunochemical alterations after kainic acid administration and colchicine-induced neurotoxicity, Proc. Natl. Acad. Sci. USA 80: 589–593.

    Article  PubMed  CAS  Google Scholar 

  • Mohrland, J. S., and Gebhart, G. F., 1981, Effect of morphine administered in the periaqueductal gray and at the recording locus on nociresponsive neurons in the medullary reticular formation, Brain Res. 225: 401–412.

    Article  PubMed  CAS  Google Scholar 

  • Mudge, A. W., Leeman, S. E., and Fischbach, G. D., 1979, Enkephalin inhibits release of substance P from sensory neurons in culture and decreases action potential duration, Proc. Natl. Acad. Sci. USA 76: 526–530.

    Article  PubMed  CAS  Google Scholar 

  • Muehlethaler, M., Gähwiler, B. H., and Dreifuss, J. J., 1980, Enkephalin-induced inhibition of hypothalamic paraventricular neurons, Brain Res. 197: 264–268.

    Article  PubMed  CAS  Google Scholar 

  • Murase, K., Nedeljkov, V., and Randic, M., 1982, The actions of neuropeptides on dorsal horn neurons in the rat spinal cord slice preparation: An intracellular study, Brain Res. 234: 170–176.

    Article  PubMed  CAS  Google Scholar 

  • Napier, T. C., Pirch, J. H., and Strahlendorf, H. K., 1983, Naloxone antagonizes striatally-induced suppression of globus pallidus unit activity, Neuroscience 9: 53–59.

    Article  PubMed  CAS  Google Scholar 

  • Nicoll, R. A. and Madison, D. V., 1984, The action of enkephalin on interneurons in the hippocampus, Soc. Neurosci. Abst. 10: 660.

    Google Scholar 

  • Nicoll, R. A., Siggins, G. R., Ling, N., Bloom, F. E., and Guillemin, R., 1977, Neuronal actions of endorphins and enkephalins among brain regions: A comparative microiontophoretic study, Proc. Natl. Acad. Sci. USA 74: 2584–2588.

    Article  PubMed  CAS  Google Scholar 

  • Nicoll, R. A., Alger, B. E., and Jahr, C. E., 1980, Enkephalin blocks inhibitory pathways in the vertebrate CNS, Nature 287: 22–25.

    Article  PubMed  CAS  Google Scholar 

  • Noda, U., Furutani, Y., Takahashi, H., Toyosato, M., Hiroge, T., Inayama, S., Nakanishi, S., and Numa, S., 1982, Cloning and sequence analysis of cDNA for bovine adrenalproenkephalin, Nature 295: 202–206.

    Article  PubMed  CAS  Google Scholar 

  • North, R. A., 1979, Opiates, opioid peptides and single neurons, Life Sci. 24: 1527–1546.

    Article  PubMed  CAS  Google Scholar 

  • Ono, T., Oomura, Y., Nishino, H., Sasaki, D., Muramoto, K., and Yano, I., 1980, Morphine and enkephalin effects on hypothalamic glucoresponsive neurons, Brain Res. 185: 208–212.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, M. R., Morris, D. H., Taylor, D. A., Stewart, J. M., and Hoffer, B., 1978, Electrophysiological effects of enkephalin analogues in rat cortex, Life Sci. 23: 851–860.

    Article  PubMed  CAS  Google Scholar 

  • Pepper, C. M., and Henderson, G., 1980, Opiates and opioid peptides hyperpolarize locus coeruleus neurons in vitro, Science 209: 394–396.

    Article  PubMed  CAS  Google Scholar 

  • Pert, C. B., and Snyder, S. H., 1974, Opiate receptor binding of agonists and antagonists affected differentially by sodium, Mol. Pharmac. 10: 868–879.

    CAS  Google Scholar 

  • Pickel, V. M., Joh, T. H., Reis, D. J., Leeman, S. E., and Miller, R. J., 1979, Electron microscopic localization of substance P and enkephalin in axon terminals related to dendrites of catecholaminergic neurons, Brain Res. 160: 387–400.

    Article  PubMed  CAS  Google Scholar 

  • Pickel, V. M., Sumal, K. K., Beckley, S. C., Miller, R. J., and Reis, D. J., 1980, Immunocytochemical localization of enkephalin in the neostriatum of rat brain: A light and electron microscopic study, J. Comp. Neurol. 189: 721–740.

    Article  PubMed  CAS  Google Scholar 

  • Ruda, M. A., 1982, Opiates and pain pathways: Demonstration of enkephalin synapses on dorsal horn projection neurons, Science 215: 1523–1525.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, M., Zieglgänsberger, W., and Herz, A., 1976, Actions of opiates upon single unit activity in the cortex of naive and tolerant rats, Brain Res. 115: 99–110.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, M., Akaike, A., and Takagi, H., 1979, Excitation by morphine and enkephalin of single neurons of nucleus reticularis paragigantocellularis in the rat: a probable mechanism of analgesic action of opioids, Brain Res. 169: 406–410.

    Article  PubMed  CAS  Google Scholar 

  • Sawada, S., and Yamamoto, C., 1981, Postsynaptic inhibitory actions of catecholamines and opioid peptides on the bed nucleus of the stria terminalis, Exp. Brain Res. 41: 264–270.

    Article  PubMed  CAS  Google Scholar 

  • Schulman, J. A., 1981, Anatomical distribution and physiological effects of enkephalin in rat inferior olive, Regulatory Peptides 2: 125–137.

    Article  PubMed  CAS  Google Scholar 

  • Segal, M., 1979, Serotonergic innervation of the locus coeruleus from the dorsal raphe and its action on responses to noxious stimuli, J. Physiol. (Lond.) 286: 401–415.

    CAS  Google Scholar 

  • Snead, O. C., and Bearden, L. J., 1982, The epileptogenic spectrum of opiate agonists, Neuro-pharmacology 21: 1137–1144.

    CAS  Google Scholar 

  • Sumal, K. K., Pickel, V. M., Miller, R. J., and Reis, D. J., 1982, Enkephalin-containing neurons in substantia gelatinosa of spinal trigeminal complex: Ultrastructure and synaptic interaction with primary sensory afferents, Brain Res. 248: 223–236.

    Article  PubMed  CAS  Google Scholar 

  • Udenfriend, S., and Kilpatrick, D. L., 1983, Biochemistry of the enkephalins and enkephalincontaining peptides, Arch. Biochem. Biophys. 221: 309–323.

    Article  PubMed  CAS  Google Scholar 

  • Valentino, R. J., and Dingledine, R., 1982, Pharmacological characterization of opioid effects in the rat hippocampal slice, J. Pharmacol. Exp. Ther. 223: 502–509.

    PubMed  CAS  Google Scholar 

  • Wakerley, J. B., Noble, R., and Clarke, G., 1983, Effects of morphine and D-ala, D-leu enkephalin on the electrical activity of supraoptic neurosecretory cells in vitro, Neuroscience 10: 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Wamsley, J. K., Young, W. S., and Kuhar, M. J., 1980, Immunohistochemical localization of enkephalin in rat forebrain, Brain Res. 190: 153–174.

    Article  PubMed  CAS  Google Scholar 

  • Watson, S. J., Khachaturian, H., Akil, H., Coy, D. H., and Goldstein, A., 1982, Comparison of the distribution of dynorphin systems and enkephalin systems in brain, Science 218: 1134–1136.

    Article  PubMed  CAS  Google Scholar 

  • Watson, S. J., Khachaturian, H., Taylor, L., Fischli, W., Goldstein, A., and Akil, H., 1983, Prodynorphin peptides are found in the same neurons throughout rat brain: Immunocytochemical study, Proc. Natl. Acad. Sci. USA 80: 891–894.

    Article  PubMed  CAS  Google Scholar 

  • Weber, E., and Barchas, J. D., 1983, Immunohistochemical distribution of dynorphin B in rat brain: Relation to dynorphin A and a-neo-endorphin systems, Proc. Natl. Acad. Sci. USA 80: 1125–1129.

    Article  PubMed  CAS  Google Scholar 

  • Werz, M. A., and MacDonald, R. L., 1982, Opiate alkaloids antagonize postsynaptic glycine and GABA responses: correlation with convulsant action, Brain Res. 236: 107–119.

    Article  PubMed  CAS  Google Scholar 

  • Werz, M. A., and MacDonald, R. L., 1983a, Opioid peptides with differential affinity for mu-and delta-receptors decrease sensory neuron calcium-dependent action potentials, J. Pharmacol. Exp. Ther. 227: 394 402.

    Google Scholar 

  • Werz, M. A., and MacDonald, R. L., 1983b, Opioid peptides selective for mu-and delta-opiate receptors reduce calcium-dependent action potential duration by increasing potassium conductance. Neurosci. Lett. 42: 173–178.

    Article  PubMed  CAS  Google Scholar 

  • Werz, M. A., and MacDonald, R. L., 1984, Dynorphin reduces Ca-dependent action potential duration by decreasing voltage-dependent calcium conductance, Neurosci. Lett. 46: 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J. T., Egan, T. M., and North, R. A., 1982, Enkephalin opens potassium channels on mammalian central neurons, Nature 299: 74–77.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J. T., Henderson, G., and North, R. A., 1984, Locus coeruleus neurons, in: Brain Slices ( R. Dingledine, ed.), Plenum Press, New York.

    Google Scholar 

  • Yaksh, T. L., and Rudy, T. A., 1978, Narcotic analgesics: CNS sites and mechanisms of action as revealed by intracerebral injection techniques, Pain 4: 299–359.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura, M., and North, R. A., 1983, Substantia gelatinosa neurones in vitro hyperpolarized by enkephalins, Nature 305: 529–531.

    Article  PubMed  CAS  Google Scholar 

  • Zieglgänsberger, W., and Bayerl, H., 1976, The mechanism of inhibition of neuronal activity by opiates in the spinal cord of cat, Brain Res. 115: 111–128.

    Article  PubMed  Google Scholar 

  • Zieglgänsberger, W., and Tulloch, I. F., 1979, The effects of methionine- and leucine-enkephalin on spinal neurones of the cat, Brain Res. 167: 53–64.

    Article  PubMed  Google Scholar 

  • Zieglgänsberger, W., French, E. D., Siggins, G. R., and Bloom, F. E., 1979, Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons, Science 205: 415–417.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Dingledine, R. (1985). Opioid Peptides: Central Nervous System. In: Rogawski, M.A., Barker, J.L. (eds) Neurotransmitter Actions in the Vertebrate Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4961-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4961-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4963-1

  • Online ISBN: 978-1-4684-4961-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics