GABA: Presynaptic Actions

  • Robert A. Davidoff
  • John C. Hackman


Activation of afferent spinal inputs not only excites secondary neurons (interneurons) and motoneurons but also results in inhibition of the transmission of other sensory impulses.* Although the mechanism of this inhibition has been the focus of considerable controversy in the past two decades, there is agreement that much of the effect—designated “presynaptic inhibition”—is produced at the level of the presynaptic terminal of afferent fibers.


Dorsal Root Ganglion Dorsal Root Afferent Fiber Presynaptic Inhibition Afferent Terminal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, R. D., Evans, R. H., and Johnston, G. A. R., 1980, γ-aminobutyric acid agonists: An in vitro comparison between depression of spinal synaptic activity and depolarization of spinal root fibres in the rat, Br. J. Pharmacol. 70: 609–615.Google Scholar
  2. Balcar, V. J., and Johnston, G. A. R., 1973, High affinity uptake of transmitters: Studies on the uptake of L-aspartate, GABA, L-glutamate, and glycine in cat spinal cord, J. Neurochem. 20: 529–539.PubMedCrossRefGoogle Scholar
  3. Barker, J. L., and Nicoll, R. A., 1973, The pharmacology and ionic dependency of amino acid responses in the frog spinal cord, J. Physiol. (Lond.) 228: 259–277.Google Scholar
  4. Barker, J. L., Nicoll, R. A., and Padjen, A., 1975a, Studies on convulsants in the isolated frog spinal cord. I. Antagonism of amino acid responses, J. Physiol. (Lond.) 245: 521–536.Google Scholar
  5. Barker, J. L., Nicoll, R. A., and Padjen, A., 1975b, Studies on convulsants in the isolated frog spinal cord. II. Effects on root potentials, J. Physiol. (Lond.) 245: 537–548.Google Scholar
  6. Bell, J. A., and Anderson, E. G., 1972, The influence of semicarbazide-induced depletion of yaminobutyric acid on presynaptic inhibition, Brain Res. 43: 161–169.PubMedCrossRefGoogle Scholar
  7. Bell, J. A., and Anderson, E. G., 1974, Dissociation between amino-oxyacetic acid-induced depression of spinal reflexes and the rise in cord GABA levels, Neuropharmacology 13: 885–894.PubMedCrossRefGoogle Scholar
  8. Bowery, N. G., Hill, D. R., and Hudson, A. L., 1983, Characteristics of GABAB receptor binding sites on rat whole brain synaptic membranes, Br. J. Pharmacol. 78: 191–206.PubMedGoogle Scholar
  9. Bowery, N. G., Hill, D. R., Hudson, A. L., Price, G. W., Turnbull, M. J., and Wilkin, G. P., 1984, Heterogeneity of mammalian GABA receptors, in: Actions and Interactions of GABA and Benzodiazepines ( N. G. Bowery, ed.), Raven Press, New York, pp. 81–108.Google Scholar
  10. Burke, R. E., and Rudomfn, P., 1977, Spinal neurons and synapses, in: Handbook of Physiology, Section 1, The Nervous System, Volume 1, Cellular Biology of Neurons, Part 2 ( E. R. Kandel, ed.), American Physiological Society, Bethesda, pp. 877–944.Google Scholar
  11. Cain, C. R., and Simmonds, M. A., 1982, GABA-mediated changes in excitability of the rat lateral olfactory tract in vitro, J. Physiol. (Land.) 332: 487–499.Google Scholar
  12. Carlson, C. B., 1964, Sodium and the dorsal root potential, J. Physiol. (Lund.) 172: 295–304.Google Scholar
  13. Conradi, S., 1969, On motoneuron synaptology in adult cats, Acta Physiol. Scand. [Suppl.] 332.Google Scholar
  14. Constanti, A., and Nistri, A., 1976, A comparative study of the action of y-aminobutyric acid and piperazine on the lobster muscle fibre and the frog spinal cord, Br. J. Pharmacol. 57: 347–358.PubMedGoogle Scholar
  15. Curtis, D. R., and Lodge, D., 1982, The depolarization of feline ventral horn group la spinal afferent terminations by GABA, Exp. Brain Res. 46: 215–233.PubMedCrossRefGoogle Scholar
  16. Curtis, D. R., and Watkins, J. C., 1960, The excitation and depression of spinal neurones by structurally related amino acids, J. Neurochem. 6: 117–141.PubMedCrossRefGoogle Scholar
  17. Curtis, D. R., Duggan, A. W., Felix, D., and Johnston, G. A. R., 1971, Bicuculline, an antagonist of GABA and synaptic inhibition in the spinal cord, Brain Res. 32: 69–96.PubMedCrossRefGoogle Scholar
  18. Curtis, D. R., Lodge, D., and Brand, S., 1977, GABA and spinal afferent terminal excitability in the cat, Brain Res. 130: 360–363, 1977.PubMedCrossRefGoogle Scholar
  19. Davidoff, R. A., 1972, Gamma-aminobutyric acid antagonism and presynaptic inhibition in the frog spinal cord, Science 175: 331–333.PubMedCrossRefGoogle Scholar
  20. Davidoff, R. A., 1978, Identification of the presynaptic inhibitory transmitter, in: Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System ( R. W. Ryall and J. S. Kelly, eds.), Raven Press, New York, pp. 261–263.Google Scholar
  21. Davidoff, R. A., 1982, Studies of neurotransmitter actions (GABA, glycine, and convulsants), in: Epilepsy ( A. A. Ward, ed.), Raven Press, New York, pp. 53–85.Google Scholar
  22. Davidoff, R. A., and Hackman, J. C., 1978, Pentylenetetrazol and reflex activity of isolated frog spinal cord, Neurology (Minneap.) 28: 488–494.Google Scholar
  23. Davidoff, R. A., and Hackman, J. C., 1983, Drugs, chemicals, and toxins: Their effects on the spinal cord, in: Handbook of the Spinal Cord, Volume 1, Spinal Cord Pharmacology ( R. A. Davidoff, ed.), Marcel Dekker, New York, pp. 409–476.Google Scholar
  24. Davidoff, R. A., and Hackman, J. C., 1984, Spinal inhibition, in: Handbook of the Spinal Cord, Volume 2, Anatomy and Physiology of the Spinal Cord ( R. A. Davidoff, ed.), Marcel Dekker, New York, pp. 385–459.Google Scholar
  25. Davidoff, R. A., and Sears, E. S., 1974, The effects of Lioresal on synaptic activity in the isolated spinal cord, Neurology (Minneap.) 24: 957–963.Google Scholar
  26. Davidoff, R. A., Grayson, V., and Adair, R., 1973, GABA-transaminase inhibitors and presynaptic inhibition in the amphibian spinal cord, Am. J. Physiol. 224: 1230–1234.PubMedGoogle Scholar
  27. Davidoff, R. A., Hackman, J. C., and Osorio, I., 1980, Amino acid antagonists do not block the depolarizing effects of potassium ions on frog primary afferents, Neuroscience 5: 117–126.PubMedCrossRefGoogle Scholar
  28. Davidson, N., and Southwick, C. A. P., 1971, Amino acids and presynaptic inhibition in the rat cuneate nucleus, J. Physiol. (Lond.) 219: 689–708.Google Scholar
  29. Deschenes, M., Feltz, P., and Lamour, Y., 1976, A model for an estimate in vivo of the ionic basis of presynaptic inhibition: an intracellular analysis of the GABA-induced depolarization in rat dorsal root ganglia, Brain Res. 118: 486–493.PubMedCrossRefGoogle Scholar
  30. Dunlap, K., 1981, Two types of y-aminobutyric acid receptors on embryonic sensory neurones, Br. J. Pharmacol. 74: 579–585.PubMedGoogle Scholar
  31. Dunlap, K., and Fischbach, G. D., 1981, Neurotransmitters decrease the calcium conductance activated by depolarizing embryonic chick sensory neurones, J. Physiol. (Land. ) 317: 519–535.Google Scholar
  32. Eccles, J. C., 1964, Presynaptic inhibition in the spinal cord, Prog. Brain Res. 12: 65–89.PubMedCrossRefGoogle Scholar
  33. Eccles, J. C., Eccles, R. M., and Magni, F., 1961, Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys, J. Physiol. (Land.) 159: 147–166.Google Scholar
  34. Eccles, J. C., Schmidt, R., and Willis, W. D., 1963, Pharmacological studies on presynaptic inhibition, J. Physiol. (Lund.) 168: 500–530.Google Scholar
  35. Frank, K., and Fuortes, M. G. F., 1957, Presynaptic and postsynaptic inhibition of monosynaptic reflexes, Fed. Proc. 16: 39–40.Google Scholar
  36. Gallagher, J. P., Higashi, H., and Nishi, S., 1978, Characterization and ionic basis of GABAinduced depolarizations recorded in vitro from cat primary afferent neurones, J. Physiol. (Lund.) 275: 263–282.Google Scholar
  37. Hackman, J. C., Auslander, D., Grayson, V., and Davidoff, R. A., 1982, GABA “desensitization” of frog primary afferent fibers, Brain Res. 253: 143–152.PubMedCrossRefGoogle Scholar
  38. Iversen, L. L., and Kelly, J. S., 1975, Uptake and metabolism of y-aminobutyric acid by neurones and glial cells, Biochem. Pharmacol. 24: 933–938.PubMedCrossRefGoogle Scholar
  39. Jankowska, E., McCrea, D., Rudomín, P., and Sykovâ, E., 1981, Observations on neuronal pathways subserving primary afferent depolarization, J. Neurophysiol. 46: 506–516.PubMedGoogle Scholar
  40. Kato, E., and Kuba, K., 1980, Inhibition of transmitter release in bullfrog sympathetic ganglia induced by y-aminobutyric acid, J. Physiol. (Lond.) 298: 271–283.Google Scholar
  41. Kinnes, C. G., Connors, B., and Somjen, G., 1980, The effects of convulsant doses of penicillin on primary afferents, dorsal root ganglion cells, and on `presynaptic’ inhibition in the spinal cord, Brain Res. 192: 495–512.PubMedCrossRefGoogle Scholar
  42. Koketsu, K., Shoji, T., and Yamamoto, K., 1974, Effects of GABA on presynaptic terminals in bullfrog (Rana catesbiana) sympathetic ganglia, Experientia 30: 382–383.PubMedCrossRefGoogle Scholar
  43. KfIZ, N., Sykovâ, E., Ujec, E., and Vyklickÿ, L., 1974, Changes of extracellular potassium concentration induced by neuronal activity in the spinal cord of the cat, J. Physiol. (Lund.) 238: 1–15.Google Scholar
  44. Krnjevíc, K., 1974, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54: 418–540.Google Scholar
  45. Kudo, Y., 1978, The pharmacology of the amphibian spinal cord, Prog. Neurobiol. 11: 1–76.PubMedCrossRefGoogle Scholar
  46. Larson, A. A., and Anderson, E. G., 1979, Changes in primary afferent depolarization after administration of y-acetylenic y-aminobutyric acid (GAG), a y-aminobutyric acid (GABA) transaminase inhibitor, J. Pharmacol. Exp. Ther. 211: 326–330.PubMedGoogle Scholar
  47. Levy, R. A., 1977, The role of GABA in primary afferent depolarization, Prog. Neurobiol. 9: 211–267.PubMedCrossRefGoogle Scholar
  48. Miyata, Y., and Otsuka, M., 1975, Quantitative histochemistry of y-aminobutyric acid in cat spinal cord with special reference to presynaptic inhibition, J. Neurochem. 25: 239–244.PubMedCrossRefGoogle Scholar
  49. Nicoll, R. A., 1977, The effect of conformationally restricted amino acid analogues on the frog spinal cord in vitro, Br. J. Pharmacol. 59: 303–309.PubMedGoogle Scholar
  50. Nicoll, R. A., and Alger, B. E., 1979, Presynaptic inhibition: Transmitter and ionic mechanisms, Int. Rev. Neurobiol. 21: 217–258.PubMedCrossRefGoogle Scholar
  51. Nishi, S., Minota, S., and Karczmar, A. G., 1974, Primary afferent neurones: The ionic mechanism of GABA-mediated depolarization, Neuropharmacology 13: 215–219.PubMedCrossRefGoogle Scholar
  52. Nistri, A., 1983, Spinal cord pharmacology of GABA and chemically related amino acids, in: Handbook of the Spinal Cord, Volume 1, Spinal Cord Pharmacology ( R. A. Davidoff, ed.), Marcel Dekker, New York, pp. 45–104.Google Scholar
  53. Nistri, A., and Constanti, A., 1979, Pharmacological characterization of different types of GABA and glutamate receptors in vertebrates and invertebrates, Prog. Neurobiol. 13: 117–235.PubMedCrossRefGoogle Scholar
  54. Obata, K., 1974, Transmitter sensitivities of some nerve and muscle cells in culture, Brain Res. 73: 71–88.PubMedCrossRefGoogle Scholar
  55. Olsen, R. W., 1981, GABA-benzodiazepine-barbiturate receptor interactions, J. Neurochem. 37: 1–13.PubMedCrossRefGoogle Scholar
  56. Otsuka, M., and Konishi, S., 1974, Electrophysiology of mammalian spinal cord in vitro, Nature 252: 733–734.PubMedCrossRefGoogle Scholar
  57. Otsuka, M., and Konishi, S., 1976, GABA in the spinal cord, in: GABA in Nervous System Function ( E. Roberts, T. N. Chase, and D. B. Tower, eds.), Raven Press, New York, pp. 197–202.Google Scholar
  58. Padjen, A. L., and Hashiguchi, T., 1983, Primary afferent depolarization in frog spinal cord is associated with an increase in membrane conductance, Can. J. Physiol. Pharmacol. 61: 626–631.PubMedCrossRefGoogle Scholar
  59. Pickles, H. G., 1979, Presynaptic y-aminobutyric acid responses in the olfactory cortex, Br. J. Pharmacol. 65: 223–228.PubMedGoogle Scholar
  60. Potashner, S. J., 1979, Baclofen: Effects on amino acid release, J. Neurochem. 32: 103–109.CrossRefGoogle Scholar
  61. Roberts, F., Taberner, P. V., and Hill, R. G., 1978, The effect of 3-aminopropionate, an inhibitor of glutamate decarboxylase, on the levels of GABA and other amino acids and on presynaptic inhibition in the rat cuneate nucleus, Neuropharmacology 17: 715–720.PubMedCrossRefGoogle Scholar
  62. Schmidt, R. F., 1971, Presynaptic Inhibition in the vertebrate nervous system, Ergeb. Physiol. 63: 20–101.PubMedGoogle Scholar
  63. Simmonds, M. A., 1978, Presynaptic actions of y-aminobutyric acid and some antagonists in a slice preparation of cuneate nucleus, Br. J. Pharmacol. 63: 495–502.PubMedGoogle Scholar
  64. Simmonds, M. A., 1980, Evidence that bicuculline and picrotoxin act at separate sites to an- tagonize y-aminobutyric acid in rat cuneate nucleus, Neuropharmacology 19: 39–45.PubMedCrossRefGoogle Scholar
  65. Simmonds, M. A., 1984, Physiological and pharmacological characterization of the actions of GABA, in: Actions and Interactions of GABA and Benzodiazepines ( N. G. Bowery, ed.), Raven Press, New York, pp. 27–41.Google Scholar
  66. Somjen, G. G., 1983, Spinal fluids and ions, in: Handbook of the Spinal Cord, Volume 1, Spinal Cord Pharmacology ( R. A. Davidoff, ed.), Marcel Dekker, New York, pp. 329–380.Google Scholar
  67. Sykovâ, E., and Vyklickÿ, L., 1978, Effects of picrotoxin on potassium accumulation and dorsal root potentials in the frog spinal cord, Neuroscience 3: 1061–1067.PubMedCrossRefGoogle Scholar
  68. Tebécis, A. K., and Phillis, J. W., 1969, The pharmacology of the isolated toad spinal cord, in: Experiments in Physiology and Biochemistry, Volume 2 ( G. A. Kerkut, ed.), Academic Press, London, pp. 361–395.Google Scholar
  69. Wall, P. D., 1958, Excitability changes in afferent fibre terminations and their relation to slow potentials, J. Physiol. (Lond.) 142: 1–21.Google Scholar
  70. Werman, R., 1969, An electrophysiological approach to drug-receptor mechanisms, Comp. Biochem. Physiol. 30: 997–1017.PubMedCrossRefGoogle Scholar
  71. Wojtowicz, J. M., and Nicoll, R. A., 1982, Selective action of piretanide on primary afferent GABA responses in the frog spinal cord. Brain Res. 236: 173–181.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Robert A. Davidoff
  • John C. Hackman

There are no affiliations available

Personalised recommendations